Flood Control System Component Optimization: HEC-1 Capability October 1974 revised: September 1977 #### REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the date needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. | AGENCY USE ONLY (Leave blank) | 2. REPORT DATE | 3. REPORT | TYPE AND DATES COVERED | |------------------------------------|---|------------|-------------------------------| | | October 1974 | Training | Document No. 9 | | | revised September 1977 | | | | 4. TITLE AND SUBTITLE | • | | 5. FUNDING NUMBERS | | Flood Control System Comp | onent Optimization: HEC-1 Capabi | lity | | | 6. AUTHOR(S) | | | | | CEIWR-HEC | | | | | 7. PERFORMING ORGANIZATION NAI | • | | 8. PERFORMING ORGANIZATION | | US Army Corps of Engineers | 3 | | REPORT NUMBER | | Institute for Water Resources | 5 | | TD-9 | | Hydrologic Engineering Cent | er (HEC) | | | | 609 Second Street | , | | | | Davis, CA 95616-4687 | | | | | 9. SPONSORING / MONITORING AGE | NCY NAME(S) AND ADDRESS(ES) | | 10. SPONSORING / MONITORING | | N/A | | | AGENCY REPORT NUMBER | | | | | N/A | | | | | | | 11. SUPPLEMENTARY NOTES | | | | | The capability described here | ein is included as a regular feature | of the Sep | tember 1981 version of HEC-1; | | | output formats are different from the | | | | 12a. DISTRIBUTION / AVAILABILITY S | | | 12b. DISTRIBUTION CODE | | Approved for Public Release | . Distribution of this document is ur | nlimited. | | 13. ABSTRACT (Maximum 200 words) This document presents detailed illustrated examples of facility optimization using HEC-1. The examples were designed to assist in data assembly and coding, output interpretation, and study management. Examples included were constructed in building block sequence to illustrate the relationships between the hydrologic, economic, and cost data to demonstrate selected capability. Examples illustrated include: (1) hydrologic model for existing conditions; (2) economic evaluation of existing conditions; (3) optimization of reservoir and pumping plant with no hydrologic constraints; (4) optimization of reservoir and pumping plant with hydrologic performance constraints; (5) optimization of reservoir, pumping plant, and diversion (unconstrained); (6) optimization of local projects, levee and channel modification (unconstrained); and, (7) optimization of reservoir, pumping plant, and local protection projects with uniform local protection level. The optimization algorithm (or search procedure discussed was developed to assist the planner in systematically and efficiently screening a large number of possible flood control alternatives. It should be emphasized that the optimization procedure of HEC-1 is a planning tool for determining potential and economically feasible flood control alternatives. Once those that have potential are selected, a more detailed simulation of the operational and hydraulic characteristics of a particular component will probably be required as various stages of study (leading to design) are undertaken. | 14. SUBJECT TERMS | 15. NUMBER OF PAGES | | | |------------------------------|-----------------------------|-----------------------------|-------------------| | flood control, systems ana | 222 | | | | models, analytical technique | 16. PRICE CODE | | | | diversion, storage, pumpin | | | | | 17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF | | OF REPORT | OF THIS PAGE | OF ABSTRACT | ABSTRACT | | UNCLASSIFIED | UNCLASSIFIED | UNCLASSIFIED | UNLIMITED | NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102 # Flood Control System Component Optimization: HEC-1 Capability October 1974 revised: September 1977 US Army Corps of Engineers Institute for Water Resources Hydrologic Engineering Center 609 Second Street Davis, CA 95616 (530) 756-1104 (530) 756-8250 FAX www.hec.usace.army.mil #### TABLE OF CONTENTS | <u>!</u> | Page | |---|-------------| | INTRODUCTION | 1 | | BASIC EXAMPLE DESCRIPTION | 2 | | HYDROLOGIC MODEL | 2 | | ECONOMIC EVALUATION—EXISTING CONDITIONS | 4 | | FLOOD CONTROL MEASURE OPTIMIZATION | 5 | | SIZING RESERVOIR AND PUMPING PLANT—UNCONSTRAINED a. Detention Storage | 6
6
7 | | SIZING RESERVOIR AND PUMPING PLANT— HYDROLOGIC PERFORMANCE CONSTRAINED | 12 | | SIZING RESERVOIR, PUMPING PLANT AND DIVERSION | 14 | | SIZING LOCAL PROTECTION PROJECTS | 15 | | SIZING RESERVOIR, PUMPING PLANT, DIVERSION, AND UNIFORM PROTECTION LOCAL PROJECTS | 17 | | OBJECTIVE OF THE FLOOD CONTROL SYSTEM COMPONENT OPTIMIZATION UTILIZING HEC-1 | 18 | | REFERENCES | 19 | | APPENDIX A - INPUT DATA | | | EXHIBITS Hydrologic Model (Existing Conditions) Multiflood, Multiplan Model (Economic Evaluation of Existing Conditions) Sizing Reservoir and Pumping Plant (Unconstrained) Sizing Reservoir and Pumping Plant (Hydrologic Performance Constrained) Sizing Reservoir, Pumping Plant and Diversion (Unconstrained) Sizing Levee and Channel Modification (Unconstrained) Sizing Reservoir, Pumping Plant, Diversion and Uniform Protection Local Projects (Unconstrained) | ned) | ### LIST OF FIGURES | Figure No. | <u>Title</u> | Page | |------------|--|------| | 1 | Study Area and Schematic Representation | , 3 | | 2 | Adjustment of Component Size by Newton-Raphson Convergence Procedure | . 10 | | 3 | Effect of Diversion on Flood Hydrograph | . 15 | #### INTRODUCTION HEC-1 has been augmented to provide the capability of automatically determining the sizes of flood control system measures that result in maximizing total system net economic benefits subject to possible hydrologic performance targets. The system flood control measures that can be automatically sized are: . Detention storage reservoir(s) . Pumping plant(s) Diversion(s) Local protection(s), i.e., channel modification, levee, floodwall This document presents detailed illustrated examples of facility optimization using HEC-1. The examples are designed to assist in data assembly and coding, output interpretation, and study management. Examples included are constructed in building block sequence to illustrate the relationships between the hydrologic, economic and cost data and demonstrate selected capability. Examples illustrated include: - Hydrologic Model for existing conditions. - Economic evaluation of existing conditions. - Optimization of Reservoir and Pumping Plant with no hydrologic constraints. - Optimization of Reservoir and Pumping Plant with hydrologic performance constraints. - Optimization of Reservoir, Pumping Plant and Diversion (unconstrained). - Optimization of local protection projects; levee and channel modification (unconstrained). - Optimization of Reservoir, Pumping Plant and local protection projects with uniform local protection level. The basic reference for HEC-1 is the Users Manual listed as reference 1. The input data supplement, reference 2, updates Addendum 6 of reference 1 to include the facility optimization capability. Technical Paper No. 42, reference 3, describes the conceptual basis for the optimization problem and explains the characteristics of the flood control measures (except for the local protection capability that has recently been added) and a field application. Reference 4 summarizes various optimization algorithms and also includes a list of references pertinent to the subject matter presented herein. Reference 5 describes in detail the methodology involved in the calculation of expected annual damages. #### BASIC EXAMPLE DESCRIPTION The study area lies in the flood plain of a large river and is presently protected (to a degree) by a major levee. The levee greatly restricts outflow from the study area. Most of the storm runoff (within the study area) originates from the higher elevations (bluff areas), and most flooding occurs in the lower reaches of the study streams. Development in the flood hazard areas consists of agricultural crops, industrial-commercial areas and residential development. Figure 1 is a general map and schematization of the example area. Proposals for protecting vulnerable areas from potential flooding include a detention storage reservoir at station 10, channel modification from station 10 to 30, levee from station 20 to 30, flow diversion (bypass) from station 20 to 30, and a pumping facility with forebay ponding at the basin outlet, station 30 (see Figure 1-a). #### HYDROLOGIC MODEL The hydrologic model for existing conditions is needed to define the <u>base</u> hydrology and provide a mechanism for evaluating the performance of proposed alternatives.
Care must be taken in developing the base model to assure that all feasible alternatives can be easily evaluated and that the pattern hydrologic event is reasonably representative for the area, i.e., will not bias evaluation of alternatives. Data required for coding the basic hydrologic model is given in reference 1. Since the primary objective of this supplement is illustration of flood control system component optimization, the hydrologic model has been kept simple in that discharge hydrographs of a specific event are read in rather than computed from rainfall-runoff relations during the optimization. (The hydrographs were essentially computed in a previous run). A hypothetical event was synthesized that ranged in frequency from the annual event (1.0 exceedence frequency) in the upper basin reaches to about the 5-year event (.2 exceedence frequency) in the lower basin. Channel routing criteria has been developed for the streams from multiple water surface profile calculations and for the restricted outlet at station 30 from the geometry of the outflow culvert and local topography. Table 1 (Appendix A) contains a tabulation of the hydrologic data for existing conditions. Exhibit 1, page 1 of 2, is a listing of the HEC-1 input data for the hydrologic model. The hydrologic simulation of existing conditions indicates that for the selected event, the peak flows at stations 10, 20 and 30 are 5,370 cfs, 5,370 cfs and 10,154 cfs, respectively. The maximum storage level achieved at station 30 is 9,557 ac.ft. (maximum storage at station 30 not shown in computer printout included) and the peak outflow is 1,200 cfs. #### ECONOMIC EVALUATION—EXISTING CONDITIONS The economic evaluation for existing conditions provides the base from which economic benefits of alternatives may be evaluated. The economic evaluation of flood damages requires that flow-damage-frequency analysis be performed to develop "expected" (or average) annual damages. Reference 3 and Addendum 3 of reference 1 discuss the general application of flood damage frequency analysis to flood alternative evaluations and describe the concepts embodied in HEC-1. The information required (in addition to the hydrologic model) is flow (or storage) - damage relationships and exceedence frequency relations at the damage centers. Additional coding is required to set up the multiplan feature of HEC-I and establish the range of floods needed to evaluate the hydrologic and economic effects of alternatives. The damages in reaches 1030 and 2030 are mostly rural and result from overflow from the respective stream channels. Damage surveys have developed relationships between stage and damages for these reaches for a number of categories of damages. Water surface profile studies developed rating curves for the index stations as shown on Figure 1 so that flow-damage functions, as required by HEC-1, could be developed. The damages at location 305 are mostly urban, commercial and industrial (and are thus large) and occur because of ponding behind the levee. In HEC-1 storage is used instead of stage to represent level and thus a storage-damage function has been developed at this site. Storage is analogous to stage and the function is developed from the usual stage-damage relationship and a site stage-storage relationship. The required exceedence frequency relationships for stations 10 and 20 were based on a partial duration series analysis because significant damages occur from events that occur more frequently than the annual event. These curves were developed from regional relationships developed in other studies. The required frequency relationship for station 30 is storage-exceedence frequency. This function was derived by developing synthetic events that would reproduce the regional curves at station 10 and 20, simulating the hydrologic operation of the system for these events, and plotting the resulting peak storage levels for these events versus their exceedence frequencies. Table 2 (Appendix A) contains the economic and frequency data for the damage centers. The determination of the range of floods needed requires evaluation of the exceedence frequency relations, base hydrology and damage relations. The objective in developing the range of floods (multi-plan flood ratios) is to provide for <u>automatic</u> revision of the exceedence frequency relationship so that expected annual damages can be computed for alternative proposals. The procedure used for automatically revising the frequency curve is explained in Addendum 3 of reference 1. To accomplish this, the ratios should develop floods that cover the range of damaging floods at all damage centers; in our example, the range extends from the six times per year event at damage centers 1030 and 2030 to above the .005 event at 305. The ratios contained in Table 2 (Appendix A) when applied to the synthetic event of the hydrologic model adequately cover the range. The multi-plan coding has been prepared for two plans, which is necessary for the optimization examples following. The two plans are both for existing conditions which is of course redundant. If the multi-plan capability were being applied by itself, coding should be for as many alternatives as is desired for study. Exhibit 2, pages 1 and 2, are a complete listing of data input with notations as to revisions required from the basic hydrologic model and additions for the multi-plan evaluation. The output for a multi-plan run includes complete hydrologic simulation for existing conditions and the proposed plan of improvement (none for example) for each of the range of runoff events (nine for the example) and integration of the damage relationships. The results indicate expected annual damages under existing conditions are \$33,580, \$33,580 and \$1,110,210 for damage reaches 1030, 2030 and 305, respectively. The economic output (printout for station 1030 is page 3 of Exhibit 2) begins with a printout of control codes and includes (1) a listing of data input (ECONOMIC DATA FOR STATION 1030 PLAN 1) which includes exceedance frequency in events per year, peak flow and damages, (2) computation of expected annual damages (FLOOD DAMAGES FOR STATION 1030 PLAN 1) which includes allocation of probability intervals (PROB INT) to the range of flood events (FLOW) and incremental computed damage contribution to expected annual damages (SUM, TYPE 1, etc.) that are based on the product of PROB INT and damage associated with FLOW, and (3) the same information for the alternative plan. If the alternative plan had reduced annual damages, then the benefits (AVG ANN BFT) would be positive and equal to the difference between PLAN 1 and PLAN 2. #### FLOOD CONTROL MEASURE OPTIMIZATION The information required in addition to the hydrologic model and multi-plan economic data for flood control measure optimization are the performance parameters and cost relationships for the flood control features being considered. The mathematical structure for the optimization and the search strategy are discussed in detail in reference 3. It should be remembered (or understood) that economic optimum is achieved when the facilities are sized such that the computed difference between expected annual benefits and expected annual costs is maximized. The solution may proceed unconstrained or it can be constrained such that a minimum hydrologic performance at specified control points must be accomplished simultaneously with the net benefit maximization. The general technique used is to successively operate the multi-plan simulation in a controlled fashion while automatically adjusting component sizes toward optimum. #### SIZING RESERVOIR AND PUMPING PLANT — UNCONSTRAINED The first optimization example will be the determination of the optimum (economic) sizes for a reservoir located at station 10 and a pumping plant to be located at station 30 that discharges through (or over) the levee. There is no minimum constraining hydrologic performance required. Information must therefore be assembled and coded that will describe, in a general way, the cost and performance of the storage reservoir and a pumping facility. a. Detention Storage. — The detention storage reservoirs that may be considered with HEC-1 are those for which it is possible to define the operating characteristics as unique functions of the storage contents within the reservoirs. A reservoir with an uncontrolled outlet works exactly meets this requirement. To provide capability for automatic adjustment of operating characteristics (as is required for automatic optimization), a reservoir is characterized by (1) the outflow characteristics of a low level outlet, which is defined by the centerline elevation of the outlet and an orifice equation of the form: where C = orifice discharge coefficient A = outlet area H = head on low level outlet g = acceleration of gravity EXP = exponent dependent on tailwater conditions, 0.5 if no tailwater and (2) the overflow characteristics of a spillway which is defined by a weir equation of the form: $$Q = C_*LH_*^{3/2}$$(2) where C* = weir discharge coefficient L = length of spillway H_* = head on spillway and (3) the site storage characteristics which are defined by an elevation-storage capacity relationship. For an <u>index storage</u> to be optimized, which is the <u>storage at the elevation of the spillway crest</u>, the above relationships are merged to define the reservoir's outflow as a function of the storage level in the reservoir (Modified Puls method of routing). Two modes are possible for a reservoir optimization. In the usual mode (for our example) a reservoir that can be characterized by a low level outlet and an overflow weir as described above will be automatically adjusted in its index storage capacity, along with all other system components, to achieve the minimum value of the objective function (defined in reference 3). The alternative mode, not illustrated, permits optimization of the size of the
low level outlet assuming the reservoir does not spill, which is appropriate for pondage in low lying areas. The cost relationships for the reservoir in the usual mode consists of a capital cost function and an associated capital recovery factor for converting the capital cost to annual cost, and the annual cost of operation, maintenance and replacement expressed as a proportion of capital cost. The capital cost function includes land acquisition and construction costs, interest during construction, etc., expressed as a function of the index storage size of the reservoir. The capital cost for a specific reservoir size being evaluated during optimization is interpolated from this function and the equivalent annual cost is computed as the product of the capital cost and the capital recovery factor for the appropriate discount rate. The annual cost of operation, maintenance and replacement is the product of the annual cost of operation and the interpolated capital cost. The total annual cost of the reservoir is the sum of these two costs. Table 3 (Appendix A) contains the data describing the performance and cost of the proposed reservoir. Pumping Plant — A pumping facility removes volume from the system at a rate equal to the pumping capacity. The performance characteristics of a pumping plant are defined by an initial threshold water level at which the pump is activated and the discharge capacity of the pumping facility. In this analysis, it is assumed that water pumped from the system does not later appear at other locations in the system. The cost of a pumping facility is computed from a capital cost function and an associated capital recovery factor for converting to equivalent annual cost, the annual operation, maintenance and replacement cost that is a proportion of the capital cost, and the annual power cost. The power cost is adjusted if the volume to be pumped changes as the system components sizes are being optimized. It can be demonstrated that no matter the pumping capacity, the power costs would not materially change if the volume to be pumped does not change. The annual power costs are therefore adjusted only for water that is removed from the system by diversions or other pumping facilities. The annual cost is the sum of the equivalent annual cost, annual operation and maintenance cost, and annual power cost. Table 4 (Appendix A) contains the data describing the performance and cost of the proposed pumping plant. The coding requires initial estimates for the facility sizes (starting values) and a number of control codes to indicate location and type of facility to be sized. The starting values selected were 10,000 ac.ft. and 4,000 cfs for the reservoir and pumping plant, respectively. Exhibit 3, pages 1 and 2, are a listing of the input data for this example including notations of revisions and additions to the data required for the multi-plan evaluation example. Exhibit 3, pages 3 - 43, are reproductions of the complete output from the optimization run. The output of an optimization run includes: - 1. The derived optimum size for each facility in the system included in the optimization (page 43). - Complete hydrologic simulation of the system with and without the optimally sized facilities for the range of floods processed (nine for this example) (pages 6 - 42). - 3. Economic expected annual damage analysis with and without the optimally sized facilities for each damage center in the system (pages 17, 24 and 41). - 4. Costs for the derived system facilities (pages 11 and 40). - 5. A summary of system cost, performance and net benefits (page 42). The derived optimum sizes are 9,119 ac.ft. for the reservoir and 2,885 cfs for the pumping plant (summary page 43). The total capital cost is \$7,497,000 and system annual net benefits are \$173,000 (benefit cost ratio of 1.26). The derived values were adjusted from the starting values of 10,000 ac.ft. and 4,000 cfs which corresponded to a capital cost of \$8,740,000 and system net benefits of 158,000 (page 43). It is necessary, in each case, to test for possible local optima in the search procedure. This was accomplished by making a separate run with starting values of 3,000 ac.ft. and 500 cfs respectively. The derived sizes were 6,584 ac.ft. and 2,835 cfs costing \$6,591,000 and resulting in annual system net benefits of \$199.000. The results indicated that a local optimum did exist such that additional runs were made with different initial values until it could be reasonably concluded that the proper sizes were 6,584 ac.ft. for the reservoir and 2,835 cfs for the pumping plant. The hydrologic performance can be characterized by the "degree of protection" provided, i.e., the exceedence frequency of the threshold of damaging flow. At damage center 1030, the zero damage exceedence frequency was reduced from about the 5 times per year event to about the annual event (deduced from page 17 and the additional runs made). Note that damages at station 1030 are quite small in relation to those at 305 and therefore probably had very little influence on the determination of the optimum sizes. At damage center 305, the frequency of significant damages was reduced from about the 3-year exceedence interval event to about the 10-year event, which incidentally reduced expected annual damages by more than half. Detailed study of the output can provide insight into the optimization methodology as well as the sensitivity of the system performance to a range of facility sizes. Pages 3 through 6 of Exhibit 3 contain detailed output on the progress of the optimization. The variables for optimization printed on page 3 are defined below and a review of the search procedure (reference 3) and the corresponding results from the output are described. #### Variable Definition NC = Counter denoting stage in search cycle (1-3) M = Variable that is being adjusted for this cycle (corresponds to fields on J2 card listed above as SYSTEM OPTIMIZATION) M1 = Next variable to be adjusted (optimized) VAR(M) = Current value of variable M VAR(M1) = Current value of variable M1 OBJ DEV = Used in connection with hydrologic performance constraint; described in example in next section TANCST = Total annual cost of facilities at current values ANDMG = Total annual damage for all damage centers for facilities at current values O FTN(NC) = Objective function that is being minimized; in this example it is the sum of TANCST and ANDMG #### Search Procedure (see reference 3) (1) First, trial sizes of all system components are nominated and the entire system is simulated in all of its hydrologic, costs, and economic detail to calculate the value of the objective function, which for unconstrained optimization is the sum of the equivalent annual cost (TANCST) and annual damage (ANDMG). The first value (NC=1) of the objective function is 1018.883 (2) Then the size of one component is decreased by a small selected amount (1 percent) and the simulation is repeated for the entire system to compute a new value of the objective function. This is repeated again resulting in three unique values of the objective function for small changes in the size of one component. The values of the variable and objective function are | NC | VAR(M) | O FTN(NC) | |---|--------|-----------| | 1 f(X ₀) | 10000 | 1018.883 | | 2 f($X_0 - \Delta X$) | 9900 | 1018.205 | | 2 $f(X_O - \Delta X)$
3 $f(X_O - 2\Delta X)$ | 9800 | 1017.645 | (3) From these three values, an estimate is made of the component size that would result in the minimum value of the objective function. The computation of the adjustment is shown in Figure 2 and proceeds as follows: Figure 2.— Adjustment of Component Size by Newton-Raphson Convergence Procedure $$f''\left(X_o - \frac{\Delta X}{2}\right) = \tan\theta = f'\left(X_o - \frac{\Delta X}{2}\right) \left[\left(X_o - \frac{\Delta X}{2}\right) - X^*\right]^{-1} \dots (3)$$ or $$X^* = X_o - \left[f' \left(X_o - \frac{\Delta X}{2} \right) \right] \left[f'' \left(X_o - \frac{\Delta X}{2} \right) \right]^{-1} - \frac{\Delta X}{2} \dots \dots (4)$$ in which $$f'\left(X_o - \frac{\Delta X}{2}\right) = [f(X_o) - f(X_o - \Delta X)](\Delta X)^{-1}$$ (5) $$f''\left(X_o - \frac{\Delta X}{2}\right) = [f(X_o - 2\Delta X) - 2f(X_o - \Delta X) + f(X_o)](\Delta X)^{-2}....(6)$$ and $\triangle X$ = incremental change in X; X = size of variable being optimized; X_O = present size of component X; and X* = projected "new" size for X. The calculation for adjustment of VAR(M) is as follows: $$f'''(X_0 - \frac{\Delta X}{2}) = [1017.645 - 2(1018.205) + 1018.883]/\Delta X^2 ...(8)$$ $$X_0 = 10000; \Delta X = (.01) (10000) = 100$$ $$X^* = 10000 - \frac{0.678/100}{.118/(100)^2} - \frac{100}{2} = 9380.$$ (to closest 10) . . .(9) (4) After adjustment of the size of the system component, the entire system is simulated again in detail to compute the new value of the objective function and, provided the objective function has decreased, the procedure then moves to the second system component whose scale is to be optimized. The output at this stage reads: VAR 1 ADJ FROM 10000. to 9384.07 and one cycle for one variable has been completed. (5) The above procedure is repeated for the second and all subsequent components to be optimized. Note that the same procedure is repeated for variable 9. - (6) A single adjustment has now been made for each component for one complete search of the system component sizes. The procedure is then repeated for two more complete system searches. - (7) The component whose change contributed the most to decreasing the objective function is adjusted next before another complete system search is performed. - (8) The procedure is terminated when either no more improvement in the objective function can be made (within a tolerance) for the component making the greatest contribution to decreasing the objective function, or the complete search
cycle is completed. Note that occasionally no successful adjustment can be made. If the computed adjustment does not reduce the objective function, its value is successively reduced to the original value, testing for improvement at a number of steps (pages 5 and 6 of Exhibit 3). The remaining output should be self-explanatory. Remember the output is for two plans (existing and the derived system) for nine flood events which results in 18 hydrologic simulations at each control point and two economic evaluations at all damage centers. ## SIZING RESERVOIR AND PUMPING PLANT — HYDROLOGIC PERFORMANCE CONSTRAINED The objective for this example is to determine the size of the facilities that will maximize the system net benefits while simultaneously meeting hydrologic performance targets expressed in terms of desired flow (storage) target and corresponding exceedence frequency. This example extends the previous example for the performance targets of | Reach | Target Value | Exceedence Frequency
(Events per Year) | |-------------|-------------------------|---| | 1030
305 | 1200 cfs
5000 ac.ft. | 1.0 | The starting values were selected as 5000 ac.ft. and 5000 cfs, respectively. Pages 1 and 2 of Exhibit 4 contain a listing of the input data with notations on coding revised and added. Pages 3 through 28 contain printout of selected pages of the output. The derived optimum sizes are 7528 ac.ft. for the reservoir and 6044 cfs for the pumping plant (summary page 28). The total capital cost is \$9,889,000 and system annual net benefits are \$123,000 (benefit cost ratio of 1.15). The derived values were adjusted from starting values of 5000 ac.ft. and 5000 cfs, respectively. The sensitivity of the solution to starting values was tested by making a separate run with starting values of 10,000 ac.ft. and 7000 cfs, respectively. The derived sizes were 6,007 ac.ft. and 6,570 cfs costing \$9,832,000 and resulting in annual net benefits of \$102,000. The hydrologic performance specified is achieved in that the degree of protection provided is 1.0 years (protection against the annual event) for reach 1030 and .05 (protection against the 20-year event) for reach 305 (see pages 15 and 26 of Exhibit 4). Property of the The output detailing the progress of the optimization contains additional information related to the performance target constraints. The additional variables are (page 3, Exhibit 4): #### Variable Definition ISTA = Station where performance target specified INT FLOW = Flow corresponding to the target exceedence frequency for the current values of the variables TRG FLOW = Target flow for the target exceedence frequency FLW OBJ = Component of penalty applied to objective function because of failure to meet target (illustrated later) for this station FLW DEV = Difference between INT FLW and TRG FLW OBJ DEV = Penalty applied to objective function because of failure to meet target (multiply) The additional printout occurs for all stations where performance targets are specified (as many as desired). The optimization proceeds exactly as the previous (unconstrained) example except that the objective function is penalized whenever the performance targets are not met. Note that the first objective function is extremely large (.951E+06) because of the large penalty from not meeting the target for station 305 while the objective function when optimization is complete (page 10, Exhibit 4) essentially has no penalty (.106E+04). The computation of a value of the objective function for the condition blocked out on page 5 (Exhibit 4) will illustrate the role of the penalty assessment. See reference 3 for a description of the objective function. FLW OBJ = $[(FLW DEV)/(.10 TRG FLOW)]^4$ #### Station 1030 FLW OBJ = $$\left(\frac{12.670}{120}\right)^4 = .0001$$ #### Station 305 FLW OBJ = $$\left(\frac{782.138}{500}\right)^4 = 5.988$$ #### Objective Function Assessment OBJ DEV = .0001 + 5.988 = 5.988 O FTN(NC) = (TANCST + ANDMG) (OBJ DEV + 1) 0 FTN(NC) = (774.217 + 265.434) (5.988 + 1) = 7264.80 The printout at the bottom of the pages on which economic output is shown (page 15 for example) summarizes the performance target and final regulated values. #### SIZING RESERVOIR, PUMPING PLANT AND DIVERSION A proposal offered at past public meetings has been to divert a portion of the runoff from subbasin 20 at station 20 into the adjacent watershed (which is presently undeveloped) both to reduce flooding in the downstream reaches and increase wetlands in the adjacent watershed to improve wildlife habitat. This example extends the previous reservoir and pumping plant example (unconstrained) to include a diversion from station 20. A diversion transfers flow between locations within the system. The performance characteristics are defined by a threshold flow and a diversion capacity. The concept of the diversion relationship is indicated in figure 3. Water diverted may be returned to the system at any downstream location so that it is possible to characterize facilities which would bypass a portion of flood flows around a damage center. Flow may also be permanently diverted from the system, which will be done for this example. The cost is characterized similar to a pumping plant by a capital cost function, a capital recovery factor and annual operation, maintenance and replacement factor. Table 5 (Appendix A) summarizes the performance and cost data for the proposed diversion. The coding to include a diversion at station 20 is noted on the listing of input data, pages 1 and 2 of Exhibit 5. Note that it was necessary to include a dummy reservoir at station 20 in order to accommodate the requirements for a diversion. Figure 3. — Effect of Diversion on Flood Hydrograph Pages 3 through 34 of Exhibit 5 contain selected pages of the output. The derived optimum sizes are 6620 ac.ft. (index storage) for the reservoir, 863 cfs for the diversion and 2250 cfs for the pumping plant (summary page 34). The total capital cost is \$7,099,000 and system net benefits are \$197,000 (benefit cost ratio of 1.33). The derived values were adjusted from starting values of 4000 ac.ft., 500 cfs and 1000 cfs, respectively, for the reservoir, diversion, and pumping plant. The sensitivity of the solution to starting values was tested by making a separate run with new starting values of 10,000 ac.ft., 3000 cfs and 4000 cfs, respectively. The derived sizes were 6648 ac.ft., 1393 cfs and 2160 cfs, respectively, costing \$7,617,000 and resulting in annual net benefits of \$167,000. In comparison with the previously derived values, it appears the diversion should be the smaller size. Additional runs demonstrate the value of testing a few starting values in an effort to locate a reasonable optimum. The hydrologic performance of the derived system can be characterized by the degree of protection provided, i.e., the exceedence frequency of the threshold of damaging flows. At control point 1030, the 0 damage exceedence frequency was reduced from about the five times per year event to about the annual event (about the same as the example without the diversion). At control point 2030, the 0 damage exceedence frequency was not materially changed from the five times per year event. At control point 305, the frequency of significant damage was reduced from about the 3-year exceedence interval event to between the 10 and 15-year events. The residual damages for the system are reduced to about 1/3 of the damages under existing conditions. #### SIZING LOCAL PROTECTION PROJECTS Local protection projects include levees, floodwalls and channel modifications. Ignoring for the moment natural valley storage effects, the hydrologic and economic effects of local projects are truly local, i.e., do not interact with the system hydrology. If this is the case, and it will be unless the modification is extensive, then a local project can be completely characterized performance-wise by a design Q (or storage) and a flow (or storage) damage function. Damages are usually negligible below the design flow and follow a curve related to the local site hydraulics and damage potential above this point. A levee or floodwall essentially truncates the damage function below the design flow (basic hydraulic-economic relationship unchanged) while channel modifications lower the relationship in response to the improved conveyance characteristics. The concept embodied in HEC-1 is that a design flow is associated with a unique damage relationship and therefore if the range of feasible design flows are known, the relationship for a specific design flow within the feasible range could be determined. The relationship (flow or storage-damage) for a specific design flow is determined by interpolating between the relationships defining the feasible range are termed "pattern functions;" the minimum design damage function corresponding to the design flow considered the lowest value feasible and the maximum design damage function corresponding to the design flow considered the highest value feasible. The local projects considered for this example are a channel modification for reach 1030 and a levee for reach 2030. The pattern damage functions for reach 1030 were developed from water surface profile and economic The minimum design damage function corresponds to a "clear and snag" alternative and was constructed by computing water surface profiles for a smoothed boundary to develop a rating curve at the index station that was subsequently combined with an area, elevation, damage relationship. The design flow associated with this function is 1700 cfs, the lower limit of design flow. The maximum design function corresponds to a 40 ft. bottom width, 2 to 1 side slope channel enlargement and was constructed by computing water surface profiles for modified hydraulic geometry to develop a rating curve that was subsequently combined with an area, elevation, damage relationship. The design flow
associated with this function is 8300 cfs, the upper limit of design flow for the enlarged channel. Table 6 (Appendix A) summarizes the performance and cost data for the proposed channel modification for reach 1030. Table 6 also contains a generated damage function for a specific design flow to illustrate the interpolation concept. The upper and lower pattern damage functions for reach 2030 are the same and correspond to existing conditions. The reason for the correspondence is that the effect of a levee is primarily to truncate the function at the design flow. Some change is possible for various designs if the flow area is greatly restricted by the levees. The example assumes no significant conveyance change from the levees, though the methodology does not require the assumption. Table 7 (Appendix A) summarizes the cost and performance data for the proposed levee reach. The existing conditions damage relationships, cost and runoff hydrology for reaches 1030 and 2030 have been purposefully made the same so that the methodology developed for handling local projects can be easily observed. The example contains only local projects (other damage centers and alternatives removed) so that the difference in the derived sizes of the two alternatives should only be due to differences in their performance, i.e., modified damage relationships. A listing of the input data for this example is contained on pages 1 and 2 of Exhibit 6. Pages 3 through 15 of Exhibit 6 contain <u>selected</u> pages of the output of the optimization run. The derived optimum sizes are about 5000 cfs design flow for both the channel modification reach and the levee reach. This amounts to about a 0.7 exceedence frequency degree of protection. The total capital cost is \$207,000 and system annual net benefits of \$30,000. The derived values were adjusted from starting values of 2000 cfs design flow for each facility. It is interesting to note that while both facilities began and ended with the same values, the adjustment route to the optimum was different. There was no requirement that they both end up the same size (see pages 3 through 5 of Exhibit 6). In addition, note that while the values derived were the same, the net benefits were different because the damage relationships were quite different. The channel modification cost \$104,000 and had average annual benefits of 27,000 for annual net benefits of \$19,000 (benefit cost ratio of approximately 3.4). The levee cost \$103,000 and had average annual benefits of \$19,000 for annual net benefits of \$11,000 (benefit cost ratio of approximately 2.4). ### SIZING RESERVOIR, PUMPING PLANT, DIVERSION, AND UNIFORM PROTECTION LOCAL PROJECTS This final example includes all the proposed components that have been previously illustrated. The optimization will be unconstrained and the uniform protection level option for the local projects will be used. The uniform protection level option will in effect cause a "degree of protection" to be optimized for the two local protection projects. A complete listing of the input data is contained on pages 1 through 3 of Exhibit 7 and the complete output on pages 4 through 39. The derived optimum sizes are 6701 ac.ft. for the reservoir, 0.2 exceedence frequency for the levee and channel projects (2947 cfs for the channel modification and 7660 cfs for the levee), 670 cfs for the diversion and 2450 cfs for the pumping plant for a total capital cost of \$7,408,000 and system net benefits of \$196,000 (benefit cost ratio of 1.31). The optimum sizes were adjusted from starting values of 4000 ac.ft. for the reservoir, 0.2 exceedence frequency (uniform protection) for local projects, 500 cfs for the diversion and 1000 cfs for the pumping plant. A comparison of Exhibits 5 and 7 indicates that the inclusion of local projects has very little effect on the optimum sizes of the major facilities (reservoir and pumping plant). The diversion capacity was lowered slightly from that derived in Exhibit 5 which probably means that it is more efficient to protect reach 2030 by the levee project. ### OBJECTIVE OF THE FLOOD CONTROL SYSTEM COMPONENT OPTIMIZATION UTILIZING HEC-1 The optimization algorithm (or search procedure) discussed in this training document has been developed to assist the planner in systematically and efficiently screening a large number of possible flood control alternatives. Although there is an upper limit to the number which can be satisfactorily and economically optimized in one particular computer run, it is still possible to analyze a large number of components by grouping. In the Phoenix Urban Study, Los Angeles District Corps of Engineers (reference 6), there were eight upstream storage alternatives to be evaluated. Although each component was analyzed individually, it was possible to determine which component and combination of components were economically feasible by making several runs in groups of two and three components and comparing the economic and hydrologic consequences. It should be emphasized that the optimization procedure of HEC-1 is a planning tool for determining potential and economically feasible flood control alternatives. Once those that have potential are selected, then a more detailed simulation of the operational and hydraulic characteristics of a particular component will probably be required as various stages of study (leading to design) are undertaken. #### REFERENCES - 1. <u>HEC-1, Flood Hydrograph Package</u>, Users Manual, U.S. Army Corps of Engineers, The Hydrologic Engineering Center, Davis, California, January 1973. - Input Data Description, Addendum 6 to HEC-1 Users Manual, September 1974. - 3. Davis, Darryl W., "Optimal Sizing of Urban Flood Control Systems," Technical Paper No. 42, U.S. Army Corps of Engineers, The Hydrologic Engineering Center, Davis, California, March 1974. - 4. Optimization Model for the Design of Urban Flood-Control Systems, Technical Report CRWR-141, Center for Research in Water Resources, College of Engineering, University of Texas, Austin, Texas, November 1976. - 5. Expected Annual Flood Damage Computation, Users Manual, U.S. Army Corps of Engineers, The Hydrologic Engineering Center, Davis, California, June 1977. - 6. <u>Interagency Task Force on Orme Dam Alternatives</u>, Preliminary Flood Control Summary Report, Phoenix Urban Study, Los Angeles District, U.S. Army Corps of Engineers, Los Angeles, California, September 1977. APPENDIX A INPUT DATA 1, TABLE 1 HYDROLOGIC DATA (Existing Conditions) #### DRAINAGE AREA | Subbasin | Area
<u>(square miles)</u> | |----------|-------------------------------| | 10
20 | 35.1
35.1 | | 30 | TOTAL 10.0
80.2 | #### SUBBASIN RUNOFF SYNTHETIC STORM EVENT (hourly values) | | ow to
O (cfs) | | flow to
20 (cfs) | | flow to
30 (cfs) | |--------------------------------------|----------------------------|--------------------------------------|----------------------------|--------------------------------------|----------------------| | 24 | 2200 | 24 | 2200 | 8 | 730 | | 24 | 1840 | 24 | 1840 | 8 | 615 | | 26 | 1540 | 26 | 1540 | 9 | 515 | | 33 | 1250 | 33 | 1250 | 11 | 415 | | 50 | 995 | 50 | 995 | 17 | 330 | | 85 | 775 | 85 | 775 | 28 | 255 | | 190 | 605 | 190 | 605 | 63 | 200 | | 375 | 470 | 375 | 470 | 125 | 155 | | 515 | 365 | 515 | 365 | 170 | 120 | | 590 | 280 | 590 | 280 | 195 | 93 | | 660 | 215 | 660 | 215 | 220 | 72 | | 710 | 160 | 710 | 160 | 230 | 54 | | 760 | 120 | 760 | 120 | 255 | 41 | | 800 | 95 | 800 | 95 | 265 | 32 | | 840 | 77 | 840 | 77 | 280 | 26 | | 910 | 66 | 910 | 66 | 305 | 22 | | 1040 | 59 | 1040 | 59 | 350 | 20 | | 1290 | 53 | 1290 | 53 | 430 | 18 | | 1920 | 49 | 1920 | 49 | 640 | 16 | | 3000 | 42 | 3000 | 42 | 1000 | 14 | | 3950
4600
5080
5360
5370 | 40
38
35
33
30 | 3950
4600
5080
5360
5370 | 40
38
35
33
30 | 1320
1540
1650
1800
1810 | 13
12
11
11 | | 5100
4600
3980
3330
2720 | 30
29
27
25
25 | 5100
4600
3980
3330
2720 | 30
29
27
25
25 | 1690
1530
1330
1110
900 | 10
10
9
9 | TABLE 1 (Continued) ### HYDROLOGIC DATA (Existing Conditions) | Reach 10-30 Mod. Pul | s Rout | ing Crit | eria ^l | | | | | |----------------------|--------|----------|-------------------|------|------|-------|-------| | Storage (ac.ft.) | 0 | 50 | 475 | 940 | 2135 | 3080 | 6300 | | Outflow (cfs) | | 200 | 1020 | 2050 | 6100 | 10250 | 24000 | | Reach 20-30 Mod Puls | Routi | ng Crite | ria ¹ | | | | | | Storage (ac.ft.) | 0 | 50 | 475 | 940 | 2135 | 3080 | 6300 | | Outflow (cfs) | 0 | 200 | 1020 | 2050 | 6100 | 10250 | 24000 | | Outflow Culvert (| Sta. 30 | Mod. | Puls Routing | <u>Criteria</u> | |----------------------------------|---------|-----------|--------------|-----------------| | Storage (ac.ft.
Outflow (cfs) |) 0 | 40
120 | | | Storage-outflow data should extend beyond the maximum values computed in the multiflood-multiplan options. Note that the outflow becomes constant and equal to 1200 cubic feet per second when the detention storage equals or exceeds 400 acre feet. TABLE 2 ECONOMIC DAMAGE-FREQUENCY DATA (Existing Conditions) #### Damage Center 1030 | Exceedence Frequency
(Events per Yr) | Flow
(cfs) | Type 1
Damage
(\$1000) | Type 2
Damage
(\$1000) | Type 3
Damage
(\$1000) | |---|---------------|------------------------------|------------------------------|------------------------------| | 6.000 | 1030 | 0.00 | 0.00 | 0.00 | | 5.500 | 1130 | 0.00 | 0.00 | 0.00 | | 4.500 | 1380 | 0.10 | 0.50 | 1.00 | | 3.500 | 1740 | 0.20 | 0.70 | 1.50 | | 2.500 | 2280 | 0.30 | 1.50 | 3.20 | | 1.500 | 3200 | 0.30 | 2.20 | 4.70 | | .900 | 4220 | 0.40 | 2.90 | 6.50 | | .700 | 4800 | 0.50 | 3.50 | 7.80 | | .500 | 5620 | 0.60 | 4.00 | 9.30 | | .350 | 6480 | 0.70 | 4.70 | 11.00 | | .250 | 7340 | 0.80 | 5.80 | 13.70 | | .150 | 8540 | 0.90 | 6.60 | 15.60 | |
.100 | 10000 | 1.00 | 8.00 | 19.00 | | .050 | 12100 | 1.20 | 10.30 | 23.00 | | .020 | 15100 | 1.50 | 15.00 | 27.80 | | .005 | 21000 | 1.80 | 18.10 | 30.20 | #### Damage Center 2030 | Exceedence Frequency (Events per Yr) | Flow
(cfs) | Type 1
Damage
(\$1000) | |--------------------------------------|---------------|------------------------------| | 6.000 | 1030 | 0.00 | | 5.500 | 1130 | 0.00 | | 4.500 | 1380 | 1.60 | | 3.500 | 1740 | 2.40 | | 2.500 | 2280 | 5.00 | | 1.500 | 3200 | 7.20 | | .900 | 4220 | 9.80 | | .700 | 4800 | 11.80 | | .500 | 5620 | 13.90 | | .350 | 6480 | 16.40 | | .250 | 7340 | 20.30 | | .150 | 8540 | 23.10 | | .100 | 10000 | 28.00 | | .050 | 12100 | 34.50 | | .020 | 15100 | 44.30 | | .005 | 21000 | 50.10 | # TABLE 2 (Continued) ECONOMIC DAMAGE-FREQUENCY DATA (Existing Conditions) #### Damage Center 305 | Exceedence Frequency (Events per yr) | Storage
(ac-ft) | Type 1
Damage
(\$1000) | Type 2
Damage
(\$1000) | |--------------------------------------|--------------------|------------------------------|------------------------------| | .700 | 1500 | 0.00 | 0.00 | | .600 | 2300 | 37.50 | 10.50 | | .450 | 4000 | 75.00 | 15.00 | | .250 | 7000 | 1125.00 | 52.50 | | .100 | 12500 | 3150.00 | 105.00 | | .050 | 20000 | 5850.00 | 202.50 | | .020 | 28000 | 7050.00 | 300.00 | | .010 | 37000 | 9000.00 | 390.00 | | .005 | 50000 | 10650.00 | 540.00 | | .002 | 76000 | 11250.00 | 585.00 | #### Flood Ratios for Multiflood, Multiplan Evaluation 0.25 0.30 0.50 0.70 1.00 1.50 2.20 3.25 4.40 Note that the damage-frequency relationship (for damage center 305) is a function of storage and <u>not</u> discharge. ### TABLE 3 RESERVOIR PERFORMANCE AND COST DATA #### Low Level Outlet Area of Opening = 35 ft² Orfice Coefficient, C, in the general expression Q= C A (2gH)^{Exp.} (free discharge) = 0.71 Cenderline Elevation of Orfice = 975 ft No Tailwater (no submergence) Exponent of head (Exp.) = 0.5 #### Overflow Spillway Type = Ogee Length = 35 ft Weir Coefficient, C, in the general expression Q= C L H^{3/2} = 2.86 #### Cost and Site Characteristics 1 | Capacity (ac.ft.) | 0 | 2500 | 4000 | 5200 | 6800 | 9000 | 11500 | 15500 | 21000 | 30000 | |-------------------|-----|------|------|------|------|------|-------|-------|-------|-------| | Elevation (ft) | 965 | 1000 | 1015 | 1030 | 1045 | 1060 | 1075 | 1090 | 1105 | 1120 | | Cost (\$1000) | 0 | 1500 | 2400 | 3000 | 3600 | 4350 | 4950 | 5550 | 6000 | 7200 | #### Annual Cost Data Annual Operation and Maintenance = 2.3% of Capital Cost Discount Factor (Capital Recovery) = 5.04% #### Constraints Reservoir size must be in range of 0 to 25,000 ac.ft. Capacity-elevation data should extend beyond the maximum values computed in the multiflood-multiplan options and the maximum reservoir size designated. ### TABLE 4 PUMPING PLANT PERFORMANCE AND COST DATA #### Cost and Performance Data | Capacity (cfs) | 0 | 250 | 500 | 1000 | 2000 | 6000 | 8000 | 10000 | |----------------|---|-----|-----|------|------|------|------|-------| | Cost (\$1000) | | | | 1600 | 2300 | 6000 | 7860 | 8670 | #### Annual Cost Data Annual Operation and Maintenance = 2.3% of Capital Cost Discount Factor (Capital Recovery) = 5.04%Annual Power Cost = \$100,000 #### Sizing and Operation Data Pumping plant must be between 0 and 10,000 cfs. Pumps activate at storage level (at station 30) = 1500 ac.ft. Annual power cost is adjusted based on the difference in computed volumes at the pumping facility as system component sizes vary from specified initial values to optimized values ### TABLE 5 DIVERSION PERFORMANCE AND COST DATA #### Performance and Cost Data Capacity (cfs) 0 1250 2500 3750 5000 7500 10000 15000 20000 Cost (\$1000) 0 1500 2600 3400 4200 5200 6100 7500 8300 #### Annual Cost Data Annual Operation and Maintenance = 1.5% of Capital Cost Discount Factor (Capital Recovery) = 5.04% #### Operation and Constraints Diversion activation threshold = 1,500 cfs Size limit between 0 and 20,000 cfs TABLE 6 CHANNEL MODIFICATION COST AND PERFORMANCE DATA r Damage Center 1030 | Function | Type 3
Damage
(\$1000) | 0000 | 0.00 | 2.69
4.41
6.89
8.11 | 11.44
15.01
20.02
23.41 | |--|------------------------------|------------------------------|------------------------------|------------------------------|----------------------------------| | Interpolated Damage Function
Design Q = 4830cfs | Type 2
Damage
(\$1000) | 0.00 | 0.00
0.00
0.00
0.38 | 1.15
1.70
2.63
3.36 | 4.88
6.71
9.79
12.99 | | Interpola
Desig | Type 1
Damage
(\$1000) | 00000 | 0.00
0.00
0.00
0.00 | 0.20
0.29
0.36 | 0.63
0.81
1.06
1.40 | | | Flow
(cfs) | 1030
1130
1380
1740 | 2280
3200
4825
4830 | 5620
6480
7340
8540 | 10000
12100
15100
21000 | | Function
fs | Type 3
Damage
(\$1000) | 00000 | 0.0000 | 0.00
0.00
0.44 | 3.50
7.15
12.29
16.86 | | Maximum Design Damage Function
Design Q = 8300cfs | Type 2
Damage
(\$1000) | 00000 | 0.00 | 0.00
0.00
0.25 | 1.75
3.18
5.04
7.98 | | Maximum D
Desi | Type 1
Damage
(\$1000) | 0.00 | 00.00 | 0.00 | 0.25
0.42
0.64
0.99 | | e Function
ofs | Type 3
Damage
(\$1000) | 0.00 | 1.73
3.44
5.85
7.23 | 8.91
10.63
13.11 | 18.61
22.09
27.00
29.32 | | Minimum Design Damage Function
Design Q = 1700cfs | Type 2
Damage
(\$1000) | 00.00 | 0.95
1.73
2.53
2.73 | 3,53
4,08
5,01
6,16 | 7.70
9.90
14.08 | | Minimum D
Desi | Type l
Damage
(\$1000) | 0.00
0.00
0.00
0.01 | 0.14
0.25
0.36
0.43 | 0.53
0.62
0.69
0.82 | 0.97
1.17
1.43 | | | Flow
(cfs) | 1030
1130
1380
1740 | 2280
3200
4220
4800 | 5620
6480
7340
8540 | 10000
12100
15100
21000 | 1/ In the interpolation scheme zero damages are estimated to occur at a peak flow which is 99.9 percent of the design flow. # TABLE 6 (Continued) CHANNEL MODIFICATION COST AND PERFORMANCE DATA #### Performance and Cost Data | Capacity (cfs) | 1700 | 5000 | 5500 | 700 0 | 8300 | 9300 | |----------------|------|------|------|--------------|------|------| | Cost (\$1000) | 42 | 103 | 149 | 222 | 283 | 340 | #### Annual Cost Data Annual Operation and Maintenance = 2.3% of Capital Cost Discount Factor (Capital Recovery) = 5.04 % #### Design Limits Minimum Design Q = 1700 cfs Maximum Design Q = 8300 cfs TABLE 7 LEVEE COST AND PERFORMANCE DATA #### Damage Center 2030 | Flow
(cfs) | | nimum Desi
mage Funct
Damage
(\$1000) | | | Maximum De
Damage Fund
Damage
(\$1000 | ction | |--|------------|--|-------------|-------------|--|-------------| | 1030
1130
1380
1740 | | 0.00
0.00
1.60
2.40 | | | 0.00
0.00
1.60
2.40 | | | 2280
3200
4220
4800 | | 5.00
7.20
9.80
11.80 | | | 5.00
7.20
9.80
11.80 | | | 5620
6480
7340
8540 | | 13.90
16.40
20.30
23.10 | | | 13.90
16.40
20.30
23.10 | | | 10000
12100
15100
21000 | | 28.00
34.50
44.30
50.10 | | | 28.00
34.50
44.30
50.10 | | | Performance and Cost Data Capacity (cfs) Cost (\$1000) | 1700
42 | 5000
103 | 5500
149 | 7000
222 | 8300
283 | 9300
340 | #### Annual Cost Data Annual Operation and Maintenance = 2.3% of Capital Cost Discount Factor (Captial Recovery) = 5.04% # Design Limits Minimum design Q = 1700 cfs Maximum design Q = 8300 cfs ## EXHIBIT 1 HYDROLOGIC MODEL (Existing Conditions) | | | | | | | | | 400 | |--|------------|-------------|----------------|---------|--------------|------------|------|-----| | 24 25.1 70 760 800 840 910 1040 1290 5000 5060 5360 5370 5100 4600
3580 840 910 1040 1290 3580 120 120 120 120 120 120 120 120 120 12 | | RESERVOI | NFLO | | | | | | | 710 760 800 800 900 1040 1290 571 160 5060 5360 5370 5100 4600 3289 600 5360 5370 5100 4600 3289 53 30 30 30 29 29 29 20 30 30 30 30 30 30 30 30 30 30 30 30 30 | Ī | 35. | • | | | | | | | 600 5060 5360 5370 5100 4600 3670 605 605 605 605 605 605 605 605 605 60 | v - | 7 7 | 9.0 | 0 : | ю. | 5 | 2 | | | 640 1540 1250 995 775 6605 475 605 605 605 120 120 995 777 665 599 52 605 630 6300 6300 6300 6300 6300 6300 6 | 10 | 5 S | 2 6 | 4 0 | 7 0 | 5 6 | 7 d | | | 160 120 95 77 66 29 5 38 35 30 29 29 38 35 30 30 29 29 30 475 940 2135 3080 6300 20 35,1 33 50 85 190 337 24 75 80 840 910 1040 137 20 5080 5360 5370 5100 4600 398 640 1540 1250 995 775 665 35 12 35 35 35 30 30 29 30 1020 2050 6100 10250 24000 20 1020 2050 6100 10250 24000 20 1020 2050 6100 10250 24000 20 1020 2050 6100 10250 24000 20 1020 2050 6100 10250 24000 20 1020 2050 6100 10250 24000 20 1020 2050 6100 10250 24000 20 1020 2050 6100 10250 24000 20 1020 2050 6100 10250 24000 20 1020 2050 6100 10250 2600 1350 210 1550 1800 1810 1690 1550 210 1550 1800 1810 1690 1550 210 1550 1800 1810 1690 1550 210 1550 1800 1810 1690 1550 210 1550 1800 1810 1690 1550 210 1550 1800 1810 1690 1550 210 1550 1800 1810 1690 1550 210 1550 1800 1810 1690 1550 210 1650 1800 1810 1690 1550 210 1650 1000 1000 1000 1000 1000 1000 10 | 3 | 154 | in the | 00 | ? - | 9 | 77 | | | 38 35 33 30 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20 | 16 | ~ ~ | 0 | | - 6 | 3 15 | - 15 | | | 030 TIAL CHANNEL MODIFICATION REACH 50 475 940 2135 3080 6300 20 35,1 33 50 85 190 337 24 26 80 840 910 1040 129 640 540 1250 995 775 605 47 160 120 336 33 30 29 38 35 33 80 630 29 38 35 39 82 29 30 475 940 2135 3080 630 20 475 940 2135 3080 630 20 1020 2050 6100 10250 24000 30 475 940 2135 3080 630 20 1020 2050 6100 10250 24000 30 475 940 2135 3080 630 20 1020 2050 6100 10250 24000 30 415 30 30 30 30 30 30 30 30 30 30 30 30 30 | - | | 33. | CY. | | , o | | | | 50 475 940 2135 3080 6300 200 1020 1020 200 2000 2000 2000 200 | M+ | | | | | | | | | 50 475 940 2135 3080 6300 200 200 1020 200 2000 2000 2000 2000 | - | ב שליילו ב | 4 1 1 CA | 2 | E, | | | | | 50 475 940 2135 3080 6300 200 1020 2050 6100 10250 24000 20 35,1 24 26 33 50 85 190 129 640 540 1250 975 775 665 180 120 95 77 665 180 120 95 77 665 180 180 180 10250 24000 20 475 940 2135 3080 6300 20 475 940 2135 3080 6300 20 475 940 2135 3080 6300 20 1020 2050 6100 10250 24000 20 1020 2050 6100 10250 24000 20 1020 2050 6100 10250 24000 20 415 11 11 11 11 10 1530 21 180 1810 1690 1530 21 11 11 11 11 11 10 110 | | | | | | • | | | | 200 1020 2050 6100 10250 24000 20 | S | 47 | 76 | 3 | 80 | 30 | | | | 20 35,1 33 50 85 190 375 710 760 800 840 910 1040 1290 640 5560 5360 5370 4600 5980 605 1540 1290 775 605 470 1290 3980 1290 1540 1290 995 775 605 470 1290 330 29 27 65 190 1290 1290 1290 1020 1020 2050 6100 10250 24000 1020 10250 24000 1020 10250 24000 1020 10250 24000 1020 10250 24000 1020 10250 24000 1255 265 265 260 1255 260 1255 260 1255 260 1255 260 1250 1250 1250 1250 1250 1250 1250 125 | 0 | 102 | 5 | 0 | 025 | 400 | | | | 24 55.1 27 66 800 840 910 1040 1290 5080 5360 5370 5100 4600 3990 640 1540 1250 995 775 605 470 150 120 595 77 66 59 33 30 27 36 470 11AL LEVEE AND/OR BYPASS REACH 50 475 940 2135 3080 6300 20 1020 2050 6100 10250 24000 20 1020 2050 6100 10250 24000 20 1020 1020 2050 6100 10250 24000 20 1020 1020 1800 1810 1690 1530 1555 54 41 55 26 25 26 25 20 1555 54 41 11 11 11 11 10 109 | | | | | | | | | | 24 | i | | | | | | 1 | | | 710 5780 800 840 910 1040 1290 6200 5540 5100 4600 39980 6400 1540 1250 4605 475 605 475 605 475 605 475 605 475 605 475 605 475 605 475 605 475 605 475 605 475 605 475 605 475 605 475 605 475 605 475 605 475 605 475 605 415 515 415 515 415 110 110 110 110 110 110 110 110 110 1 | N. | V. | | • | x 0 · | 2 | 37 | | | 000 5000 5350 5370 5100 4600 5980 160 150 955 955 955 955 955 955 955 955 955 9 | 7 | - | 6 | 7 1 | <u>.</u> | 70 | 5 | | | 150 1510 995 775 605 47 160 1520 995 77 66 180 152 39 30 111AL LEVEE AND/OR BYPASS REACH 50 475 940 2135 3080 6300 30 1020 2050 6100 10250 24000 31 INFLOW TO FOREBAY POOL 17 28 63 12 8 9 11 17 28 63 13 84 15 25 265 260 305 350 43 84 1 32 265 200 1530 1530 153 84 11 11 11 11 10 1090 1530 153 84 11 32 26 22 20 854 41 32 26 22 20 854 41 11 11 11 10 1090 1530 153 854 41 32 26 22 20 855 11 11 11 11 11 10 10 | 0 | 0 .
0 . | 5 | 2 | 91 | 9 | 00 | ~ | | 100 160 59 59 77 66 59 59 30 30 30 29 29 20 30 30 30 29 29 20 30 30 30 29 29 20 30 30 30 30 30 30 30 30 30 30 30 30 30 | 0 | 124 | 5 | 0 | - | 0 | ~ | | | 250 55 55 50 50 29 29 030 030 030 030 030 030 030 030 030 03 | 0 1 | ~ . | 5 1 | 11 | | 65 | | | | TIAL LEVEE AND/OR BYPASS REACH 50 475 940 2135 3080 6300 200 1020 2050 6100 10250 24000 30 INFLOW TO FOREBAY POOL 8 9 11 17 28 63 18 230 255 265 280 305 350 540 1650 1800 1810 1690 1530 615 54 415 330 255 200 153 54 11 11 11 11 10 10 | 7 5 | | ?? |)
(| | ∑ ` | | | | 50 475 940 2135 3080 6300 30 1020 2050 6100 10250 24000 31 INFLOW TO FOREBAY POOL 8 9 11 17 28 63 12 230 255 265 280 305 350 540 1650 1800 1810 1690 1530 615 54 41 32 26 20 153 54 11 11 11 10 10 | 2 | L LEVEE AND | OR BYPA | SS REAC | - | | | | | 50 475 940 2135 3080 6300 30 1020 24000 30 1020 2450 6100 10250 24000 1 10250 24000 1 10250 24000 1 10250 24000 1 10250 24000 1 10250 250 1 10 | | | | | | | | | | 20 | 'n | | | | | • | | | | 200 1000 2050 6100 10250 24000 30 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | n o | 3 (| 3 1 | _ | 000 | 630 | | | | INFLOW TO FOREBAY POOL. 8 | ○ M | 2 01 | | 2 | 0.25 | 00 | | | | 10.0
8 9 11 17 28 63 12
530 255 265 280 305 350 43
540 1650 1800 1810 1690 1530 133
615 515 415 330 255 200 15
54 41 32 26 22 20
12 11 11 11 11 10 10 | AL IN | FLOW TO FOR | BAY PUD | | | | | | | 8 9 11 17 28 63 12 230 230 25 265 280 305 350 43 650 1650 1810 1690 1530 133 615 415 330 255 200 151 12 11 10 10 10 30 NED INFLUM TO FOREBAY POOL | | 10. | | | | | | Ś | | 230 255 265 360 305 350 43 540 1650 1800 1810 1690 1530 133 615 515 415 330 255 200 15 54 41 32 26 22 20 12 11 11 11 10 10 30 NED INFLUM TO FOREBAY POOL | | | | 17 | N | 63 | N | | | 540 1650 1800 1810 1690 1536 133
615 515 415 330 255 200 157
54 41 32 26 22 20 15
12 11 11 11 10 10 10
30 NED INFLUM TO FOREBAY POOL | 2 | S | 2 | 28 | 30 | 35 | - | | | 615 515 415 330 255 200 157
54 41 32 26 22 20
12 11 11 11 10 10
30
NED INFLUM TO FOREBAY POOL | ⇒ . | 165 | 80 | 8 | 9 | 53 | 10 | 31 | | 54 41 32 26 22 20 1.
12 11 11 11 10 10
30 INFLUW TO FOREBAY POOL | - | 5 | - | 1 | Ġ. | 0 | in | | | 12 11 11 11 10 10 10 10 10 10 10 10 10 10 | 52 | 3 | 32 | C | N | £ | - | | | 30
NED INFLOW TO FOREBAY POOL | ~ | - | - | | <u>.</u> 01 | 10 | | | | NED INFLOW TO FOREBAY POOL | 30 | | | | | | | | | | 발 | INFLOW TO | OREBAY | 0 | | | | | | | ₹11 | OUTLET THRO | | L. | | | | | | TY OUTLET THROUGH LEVE | | | | | | | | | | TY DUTLET THROUGH LEVEE | 0 | 10000 | | | | | | | | TY DUTLET THROUGH LEVE
1
400 100000 | 2 | 120 | | | | | | | | TY DUTLET THROUGH LEVEE 400 100000 200 1200 | | | | | | | | | | | • | 5370.
\$370. | 10 5370, 5018, 24*HDUR 72*HDUN AREA
5370, 5018, 2635, 1158, 35*10
(152.06)(142.10)(74.53)(32.80)(90.91) | 24-HOUR
2635,
74,63)(| 72-HOUR
1158. | 35.10
90.91) | |---------------|----------|-----------------|--|-----------------------------|------------------|-----------------| | ROUTED 10 | 1030 | 4312. | 4092,
115,87)(| 69,98)(| 1158. | 35.10 | | HYDROGRAPH AT | ຂັ | 5370, | 5018, | 2635, | 1158. | 35,10 | | ROUTED TO | 2030 | 4312, | 115.87)(| 2471. | 1158. | 35,10
90,91) | | 4 | 30
20 | 1810. | 1670. | 878, | 386. | 10.00 | | 3-COMBINED | ž | 10154. | 271,25)(| 5772. | 2701. | 80.20 | | ROUTED TO | 305 | 1200. | 305 1200. 1200. 1200. 966. 80.20 (33.98)(33.98)(33.98)(33.98)(207.36) | 33,98)(| 27,36) | 80,20 | # EXHIBIT 2 MULTIFLOOD, MULTIPLAN MODEL
(Economic Evaluation of Existing Conditions) | | | | | | | | | | | | LEGEND | AT AND TANDERS OF THE | N = NEW INFO! DAIN | R = REVISED INPUT DATA | ()= REVISED INPHT DATA |--|------|-----------|------|-----|--------------------------|--------------|--------------|------|---|--------------------|--------|------------------------------|--------------------|------------------------|------------------------|------|-----------|-------|-----|-----------|-------------|--------|---------|---|------|-----|------|------|-------------------|-----------------|---|---------------|-----|---------|------------|-----------------|----------|------|------| | | | | | 590 | 3000 | 02/2 |) (1
) (1 | 4 W | | | | | | | £. | | 0279 | | ۲. | | ~ | | 0.1. | | | 590 | 3000 | 2720 | O (| 7 % | • | | | | | | .35 | • | 6480 | | 3 | 07.8 | | Θ | 515 | 1920 | 3530 | 10 | . W | | • | 9) | | | | æ. | | 2620 | | • | | 0 • | | ?. | | Θ | 515 | 1920 | 3330 | | , w | | | (2) | | | | īv. | • | 5620 | | | 3,25 | | | 375 | 0621 | 2400 |) H | 7.2 | | | | | | | • | | 008# | | 'n. | | in. | | °.
` | | | 375 | 1290 | 3980 | 2 Y | 2.0 | | | | | | | | | 4800 | | | 2,20 | | | 061 | 1040 | 2004
0004 |)
) | ` | | | | - 00
- 00
- 00
- 00 | 24000 | | • | | 0220 | | ₹. | | o.
N | • | 0 | | | 190 | 1040 | 4600 | ტ
ტე | n R | | | | [| 00000 |)
)

 | • | | 4220 | | SNOILIGNO | 1,50 | | | 82 | 0.0 | 2100 |) 4
- | 38 | | Ŧ | | 0807 | 10250 | | | 5005 | 3400 | 21000 | r. | 9. | ณ
ณ : | | - a | | | 95 | 910 | 0015 | C / / | 9 6 | | • | | | | > ° ± > - | | \$00 | 3200 | | DO BNILS | 1.00 | | | င် | 840 | 0.27.U | 7.7 | . o | | TION REA | 9 | 2115 | 6100 | | 5.2 | 20 | 0
V | 15100 | • | ٠.
• | | :
: | , to | | | 20 | 078 | 5570 | ٠
٢
٢ | 30 | | | Θ | 1 · · · | 617 | 2212 | ي.
در | ₹0. | 2280 | |
×3
10
2 | 0,70 | R INFLOW | | 33 | 000 | 0000 |) #
) 0 | 33 | | MODIFICATION REACH | | 076 | 2050 | - | 3.5 | | 0 1 7 6 6 | 14100 | ~• | ~:
 | /• . | ^ L | n = | | | M. | 000 | 350 | 0 14
0 0
14 | 1 10 | | AND/UR BYPASS | - | 0,70 |) 4 E O | > | | .05 | 1740 | | VALUATIO | 0.50 | RESERVOIR | 35.1 | 92 | 0 0
0 0
0 0
0 0 | 000C | 120 | | _ | CHANNEL | | 475 | 1020 | n | 2.4 | | 000 | 0000 | 7 | 0.1 | • |)
• | • 6 | | 35.1 | 92 | 000 | 0000 | 2.70 | , m | € | LEVEE AN | | 476 | n c | >
}
> | | ٥. | 1380 | | ECUNOMIC EVALUATION OF EXISTING CONDITIONS | or. | ENTIAL | | 72. | 1,500 | 200 | 160 | 8 | | POTENTIAL | | 500 | 200 | 9- | 5.V | - | 000 | 0 | 0 | | > | 0 < | 5.6 | ŝ | | 72. | 017 | | 04- |) (II)
 pri | | DTENTIAL | | C U | 200 |) . | 5,5 | • 15 | 1130 | | ر
(ع)
(ع) | | 0
PUT | • | ≈. | 000 | 7200 | 2.5 | 0.70 | | 2 | | - 0 | 0 | 1030 | • | | | 036 | 0 | œ (| ه د
س | 2 < | 13.7 | | 7 | 7 | 000 | 0.00 | 2.0 | 3 | | 04 | | (| , c | 2030 | ٥ | . 25 | 1030 | | | LEGEND N = NEW INPUT DATA R = REVISED INPUT DATA ()= REVISED INPUT DATA | | | | |---------------|---|--|------------------|--| | | 0000
0000
0000
0000 | | \$005
76000 | 5.85
5.85
5.85
5.85
6.50 | | o . | 0000000 | Э | \$000
\$000\$ | 100
8 00
8 00
8 00
8 00
8 00
8 00
8 00
8 | | e. | 14 11
14 11
14 11
14 11
16 11 | | 37000 | 00
00
00
00
00
00
00 | | в -
• | # # # # # # # # # # # # # # # # # # # | | 28000 | 7050 | | 50.1 | M 40 M
M 40 M M M
M 10 0 M M M M | | 20000 | 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | 0 m | 10L
1880
1810
1800
1100 | . ⊖
2 | 12500 |
0.10
 | | 300 | 1820
1800
1800
1800
180 |) FOREBAY POOL
OUGH LEVEE | 7000 | | | .1 28.0
30 | 10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0 | D INFLOW TO FOREBAY PO
SOUTLET THROUGH LEVEE
10 100000
1200 | | \$ 5 5 5 5 5 5 5 5 5 5 | | 301 | | CMBINED I
305
RAVITY GU
400
1200 | 23.60 | N. 6. | | or.o | 11800081
11800081 | | 1500
1500 | 0 0 0 | | 23¥- | .E.S.S.S.S.X. | ~ x ~ > ~ & ~ ; | >-~-
 |
 | 1LPR
0 |--------------------------|---------|---------|------|--------|------|------------|-----|------|------|------|-------|-------|----------|--------|--------|----------------------|----------|----------|--------------|------|-----|----------|------|------|-------|------|----------|----------|----------|------|--------------|------|------|----------|------|---------|--------|-------|-------|--------|--| | AANC81 | ADSCNT
0.00000 | COMPUTATIC
IAGST
0 | DAMAGE
DGPRT
0.000 | . | | | | • | | _ | | | FL000
TRGT
0. | • | n 6 | | | 9 6 | 000 | 700 | 500 | 008 | 300 | 000 | 700 | 009 | 000 | 000 | 002.0 | | | - | 0 | | • | | 2.0 | 2 3 | ٠. | ा | 21,97 | | | TYPE | ŏ•0 | • | e. | ٠, ٠ |
n = | ה
ה | • | ÷. | 21.97 | | | D ANNUAL
ISAME
1 | | | | | | | . 7 | | | | = | - | <u>:</u> | - | ni i | 30. | HIS DATA | | | 0 | | | _ | | | | . | 10,02 | | | LYPE 2 | 00.0 | • 30 | 1.73 | 200 | | 80.1 | | 78. | 10.02 | | | EXPECTE
NDMG
3 | • | J C | • | ٠
ا | | ູ່ປ | ١, | .0 | . " | | . ` . | ۰. | • | ີ | ٠, | 18.10 | S FOR T | | | • 00 | .07 | 07. | | | 77. | 80 | 20. | • 20 | N | | | 00• | .07 | 07. | | |
 | 50.0 | 20. | on. | | | FL00 | | YPE | | 000.0 | • | | | 000 | 00.5 | 009 | 700 | 900 | 006 | 1.000 | 200 | 1.800 | DAMAGE | PLAN | 4 | | | | | | | | | • | PLAN | | 4 | | | | | | | | | | | | A P O P | 1030 | Ξ, | 2 : | 2 9 | 2 6 | 2 6 | 2 6 | | , ç | | | 0.0 | 0.0 | 00 | 00 | 38 | ANNUAL | 1030 | ā | 00.0 | 86 | 8.
8. | 99.9 | 7.73 | , v | 5.0 | 9 | 33,58 | 1030 | | SU | 0.0 | 36. | 80 | 9.9 | /•/ | | | 99* | 33,5 | | | 181 | STATION | | | ~ . | 0.5 | | | 3 60 | | • • | - 27 | * | - | 0 | ഥ | 50.10 | AVERAGE | STATION | 2 ←
2 × ← | 28.5 | 152 | 776 | 0.72 | 765 | - 4 | 0.37 | D10 | 910 | STATION | | L N | 798 | 752 | ,776 | 2/0 | 787 | 177 | 037 | 710. | DHG | | | | | A PEAK | 1050 | .0011 | 1200 | | • | | 4800 | 1000 | 0879 | 7340. | .0758 | 100001 | 12100. | 21000. | 40 TN | GES FOR | | 000 | 297 | • | .769 | | 하셨 | . 1 | | VG ANN D | GES FOR | EXCD | | 000 | 297 | | 169 | | | | 900 | VG ANN | | | | ۵ | - F REG | 000 | 200 | - C |) (
) (|) C | 20 | |) C | 320 | 250 | 1.50 | • 100 | 020 | 0.00
0.00
0.00 | ADJUSTHE | DOD DAMA | 30 | | 39 | 076 | 921. | - | .0101 | 5177 | 20603 | | DOD DAMA | | ₽1 0™ | | 139. | .000 | 251. | 215 | | 15177 | 20603 | | | | | 181A
2030 | NFLOD
16 | EXPECTED NOME IS | TED ANNUAL
ISAME
1 | FL000 | DAMAGE
DGPRT | COMPUTATION
IAGGT A | 10N ADSCNT | AANCST
0.00000 | 10
80
80 | |-----------------------|---------------------|----------------|------------------|--------------------------|-------|-----------------|------------------------|------------|-------------------|----------------| | ្ន | STATION 2 | 030 | | | | | | | | | | P
P
A
A
X | SUM | | | | | | | | | | | | | 0000 | 2.400 | | | | | | | | | | | | 5.000 | | | | | | | | | | | | 7.200 | | | | | | | | | | | | 008.6 | | | | | | | | | | | | 009.11 | | | | | | | | | | | | 000 | | | | | | | | | | | | 20.300 | | | | | | | | | | | | 23.100 | | | | | | | | | | | | 28,000 | | | | | | | | | | | | 34.500 | | | | | | | | | | | | 44.300 | | | | | | | | | | .0005 21000. | | 50,100 | | | | | | | | | | ADJUSTMENT OF A | AVERAGE ANN | ANNUAL DAMAGES | FOR | THIS DATA | | | | | | | | DAMAGES FUR | STATION | 2030 PLAN | | | | | | | | | | 2 C | | | | | | | | | | | | 3 6
14 6
14 6 | | | · | | | | | | | | | 0000 | | | 000 | | | | | | | | | ~ - | | | 0 - a | | | | | | | | | 1.769 | | | , , | | | | | | | | | 857 | | | 73 | | | | | | | | | .323 | | | 20.00 | | | | | | | | | 560 | | | . 70 | | | | | | | | | .050 | | | 50 | | | | | | | | | 900* | | 99• | 99• | | | | | | | | | AVG ANN D | DMG 33 | .58 33. | 58 | | | | | | | | | | | i | 12.3 | | | | | | | | | | 0.04 . 4.00
0.00 | COSO FLAN | U | | | | | | | | | | | ALIA TVDC | | | | | | | | | | 9 | 286 | | | | | | | | | | | 5 46 | 752 | | 200 | | | | | | | | | 3.09 | 776 | | .81 | | | | | | | | | 1.76 | 072 | | 99 | | | | | | | | | 4312 . 867 | 785 | 7.73 | 7.73 | | | | | | | | | , 32 | 391 | | 54 | | | | | | | | | 60. | 136 | | • 70 | | | | | | | | | .02 | 037 | | . 50 | | | | | | | | | ê. | 014 | | 99. | | \.\. | | | | | | | AVG ANN D | DMG 33 | .58 33. | 58 | A P P P P P P P P P P P P P P P P P P P | |---| |---| PEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR MULTIPLE PLANGRATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND) | OPERATION | ND11410N | A REA | \
\{\bar{4}\} | RATIO .25 | HATIO SO | RATIOS APPRATIO S | PATIO TO FL | LOWS
RATIO
1009 | RATIO 6 | RATIO 7 | RATIO 8 | RATIO 9 | |-------------------------------------|----------|-----------------|------------------|--------------------------------------|---------------------------------------|--------------------------------------|--|---|--|--|--|--------------------------------------| | HYDROGRAPH AT | | 35.10
90.91) | | 1343.
38,02)(
1343.
38,02)(| 1611,
45,62)(
1611,
45,62)(| 2685.
76.03)(
2685.
76.03) | 3759.
106,443(
3759.
106,443(| 5370
152.06)(
5370 | 8055.
228,091(
8055.
228,091(| 11814.
334.54)(
11814.
334.54)(| 17453;
494,20)(
17453;
494,20)(| 659.073
659.073
659.073 | | ROUTED TO | 50 | 35.10
90.91) | | 941.
26,65)(
941.
26,65)(| 1139.
32.24)(
1139.
32.24)(| 1940. | 82,713 C
82,713 C
82,713 C | 122.103.
423.103.
122.103. | 189,7016
6699,
189,7016 | 288.58)(
10191.
288.58)(| 15177.
429.7736
15177.
429.7736 | 583,42
583,42
583,42 | | HYDROGRAPH AT | S. | 35.10
90.913 | 7 ~ | 1343.
38.02)(
1343.
38.02)(| 1611;
45.62)(
1611;
45.62)(| 2685.
76.03)(
2685.
76.03)(| 106.84)(
106.44)(| 152.06)(
152.06)(
152.06)(| 8055.
228,09)(
8055,
228,09)(| 334,543 | 17453
494.20)(
17453
694.20)(| 23628.
669.073
669.073 | | ROUTED TO | 2030 | 35.10
90.91) | | 941.
26.65)(
941.
26.65) | 1139,
1139,
1139,
32,24)(| 54.940.
54.940.
54.940. | 2921.
82,71)(
2921.
82,71)(| 4312,
122,10)(
4312,
122,10)(| 189.70)(
6699.
189.70)(| 288,58)(
20191)
288,58)(| 15177-
429-773(
15177-
429-773(| M | | нуовобран
нуовобран
нуовобран | 9 | 10.00 | | 12.93.
12.93.
12.853. | 543.
15,38)(
543. | 905.
25.63)(
905.
25.63) | 1267.
35.88)(
1267.
35.88)(| 1810
51.25)C
1810
51.25)C | 2715.
76.88)(
2715. | 3982.
112,763(
3982.
112,763(| 5883
166.57)(
5883
166.57)(| 7964
7964
7964
225,52 | | S COMBINED S | | 80.20 | - N | 2219.
62.84)(
2219.
62.84)(| 2676.
75.79)
2676.
75.79) | 4563,
4563,
129,21)(| 194,23)(
6859,
194,23)(| 10154
287,53)(
10154
287,53)(| 15693.
444.39)
15693.
444.39) | 23748.
672.47)(
23748.
672.47)(| 35345
1000.863
35345
1000.863 | 48011
1359.53
48011
1359.53 | | ROUTED TO | 302 | 207.72) | _~~~ | 1200.
33.98)
33.98) | 1200.
13.98)(
33.98)(| 1200,
13,98)(
33,98)(| 1200°
33°98)(
33°98)(| 1200°
33,98)(
1200°
33,98)(| 33,98) (
33,98) (| 33.98)
1200. | 33,98)
33,98) | 1200
1200
1200
1200
1200 | | | | | | 1036.
1036.
1278.)
1036. | 16ES IN AC
1486.
1488.
1486. | 7587
3587
(4424.)(
4424.)(| 7263.7
7263.7
7263.7 | HETERS)***
(11788.)(
9557.
(11788.)(| 195876.
19583.)(
15876. | 24937
30760.3
24937. | 38699
38699
47784
47784 | 53376
66455
53376
66455 | ## EXHIBIT 3 SIZING RESERVOIR AND PUMPING PLANT (Unconstrained) | | | | | | | | | | | | | LEGEND | | n | = REVISED INPUT | (,)= KEVISED INPUT DATA | | | | | | | | | | | | | | | | | | |----------------------|----------------------|----|----------|-----|------------|--------------|------------|-----------|----------|-----|---|--------|-------|-------|-----------------|-------------------------|----------|--------------|----------|----------|------|-----|--------|--------|--------|------------|---|----------|--------------|----------------|---------------------------------------|------|-----| | | | | | 065 | 3000 | 2720 | 2 4 | . 'A | | | | | 30000 | 7.500 | | | | | | .35 | 0879 | | | | `
• | 11.0 | | | 0 | 01 | 27.20 | 3 = | 116 | | 3 | 4.00
0.00
0.00 | | | - | · N | 3330 | 0 7 | £. | | | | | 0 - | 0000 | | • | | | | . | 5620 | | • | < | • | 19.
O | | | 5 | At t | 3330 | 9 | 3. | | | | | | 375 | 1290 | 3980 | 2 K | 2 | | | | 200 | 1000 | 5550 | | | | | | • | 4800 | | ro. | | | 7.8 | | | 37 | 0 0 | 5980 | - 10 | 23 | | | 00
•
• | - | | 190 | 1040 | 9 9 | 9 00 | 2 | | | | 0 | 0.1 | | | | - 00 Y Y | 0 | | • | 4220 | | | o
1 | • | 6.5 | | | 5 | 3 0 | 9000 | | on | | | 1.50 | | | 85 | 5 | 5100 | 99 | 30 | u | | | 000 | 1060 | 4350 | | | 80 | 10250 | | ~ < | 3200 | • | | | | 4.7 | | | 82 | 910 | 775 | 99 | 30 | | | 00°
1 | | | 50 | 80 | 5370
995 | 1. | 30 | | ۰. | | • | 2000 | 9 | TYUN DEAL | - | ~ | 6100 | | * 0 | 2580 | C | , n. | • | • • |
| • | | | 3 1 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | - | 30 | | | 0.70 | | MOLSNI W | 33 | 80 | 5360
1250 | 0 | 33 | | 7- | | 975.0 | u o | 0 | 2 | | 0#6 | 2050 | | | 1740 | 0 | | • • | | | | | 33 | 9 5 | 1250 | • | 33 | | KAINED | 0.50 | | 35.1 | 92 | 760 | 3000
1540 | 120 | 35 | ESERVUIR | | | E 000 | - | 9 | CHANNEL | | ~ | 1020 | | •- | 1380 | 0 | (
(| | | 1.0 | | 35.1 | - 26 | 7.080
7.080 | 1540 | 120 | 35 | | UNCURSIRAL
1
1 | 0.30 | 10 |] Y : | ~ | 7 | ⊃ उ | 2 | . 38
- | OPOSED R | | | S | 00 | 20 | ENTIAL | | 20 | 200 | _ n | • | 1130 | 7 | 00 | • | 9.9 | | 5.6
20 | | ~ : - | - 0 | 1840 | 9 | 99 | | (9)
(9) | -10000
-10000 | 0 | _ | 25 | 9 0 | 0022 | č | 0 • | ax. | | | 9000 | 965 | 0 | 104 | | •• | • | 020
4 | ິ້ | 1030 | 3 | 04 | • | æ•\$ | |) • • • • • • • • • • • • • • • • • • • | • | A1 | | 2200 | | 07 | | 4 E | 5-N= | | ~ X | 2 | z 2 | zz | z | 2 ¥
 | - | > > | • | | ~ | M - | ٠- | > • | ·N | ~ ∩ 1 | ~ - | . 1 | ۸, | V P | 3 3 | 3 | 3 | J : | * | x | z 3 | : 2 | z | z: | Z | | • | | | | | | | | | | | |------|-------------------|--|-------------------|---|------------------|-------|------------------|----------|---------------------------------------|-----------------------| | > < | 900 | 15. E. 7. 7 | 940 | 2135 | 3080 | 6300 | | | | | | 2030 | | | 0502 | 6100 | 10220 | 24000 | | | | | | • | 5.0 | | → (C)
 | ٠
٢ | - | ٥ | | y | | | | . 25 | | •10 | | .05 | 500 | | | | ٠,٠ | | | 1030 | | | 1740 | 2280 | 3200 | 4220 | 4800 | 5620 | 6480 | | | 1540 | | • | 12100 | 15100 | 21000 | | | | | | | | | 9.1 | 'n | 5.0 | 7.5 | 8 | -
- | | | | | 20.5 | 23.1 | | 34.5 | 64.3 | 50.1 | | | | | | | | | - (| | | | | | | | | | | LUCAL IN | ۳. | M TO FOREBAY POOL | . | | | | | | | | ; a | • | • • • • • • • • • • • • • • • • • • • | | | | | | | | | | 000 | 200 | | | - 1- | 20 | 6 | | 170 | 561 | | | 1320 | -
5.20
5.30 | | n c |) (
) (| V (01) | 550 | 9.0 | 079 | 000 | | | 730 | 615 | 515 |) (F | 2 6 | ב
מ
מ
מ | 000 |)
)
)
) | - C | 000 | | | 72 | 5.5 | | | , , | 30 | 2 6 | n a | 7 | | | | ~ | 12 | | ; |) -
u - | V C | 2 - | 00 | <u>.</u> | 3 (| | | ** | 30 | | | | • | • | | | • • • • • • • • • • • • • • • • • • • | | | • | COMBINED | INFLOW TO FOREBAY | FOREBAY | POOL | | | | | | LEGEND | | _ | 305 | | | | ^ | | | | | | | | PROPOSED | PUMPING | PLANT SITE | , i | | | | | | N = NEW INPUT DATA | | - | | | - | • | | | | | | R = REVISED INPUT DA | | 0 | 007 | 100000 | | | | • | | | | () = REVISED INDIT DA | | 0 | 1200 | 1200 | | | | | | | | | | | | | | | | • | | | | | | | 407 | 00000 | | | | | | | | | | ۰ د | 200 | 0000 | | | | | | | | | | 1000 | > < | 2 0 | • | | | | | | | | | | 750 | | 000 | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0204 | | | | | | | · c | 070 | 1000 | 004 | | 0000 | 0000 | 10000 | | | | | 305 | 10 | • |) -
! | 706 | | 000 | 0 / 90 | | | | | .70 | 04. | 2.45 | 15 | - | A C | 000 | • | 11 e c | | | | 1500 | 2300 | 4000 | 7000 | 12500 | 20002 | 28000 | 37000 | 20000 | 20009 2 | | | • | 37.5 | 75. | 1125 | 3150 | 5850 | 7050 | 0000 | 10650 | 11350 | | | 0 | 10.5 | 5. | S
S
S | 105 | 202.5 | 002 | 200 | | > 0
0
0
0 | | | 6 | | | | | | | ,
, | } | ^ | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 16 277,367 ,102E+04 | 137 278.288 .102E+04 | :ST ANDMG O FIN(NC) | | |---|---|--|--|---|---------------------|----------------------|---------------------|---------------------------------| | | | | ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ | | TANCST
741,516 | TANCST
739.917 | TANCST
738,325 | | | | | | 8 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° | | 083 DEV | 083 DEV | 08J DEV | | | | JOB SPECIFICATION NHR NMIN 10AY IHR IMIN METRC IPLT IPRT NSTAN 1 0 0 0 0 0 0 3 0 3 00 0 0 3 0 6 0 0 0 0 | :D 3.25 4.40 | 01V 7 0 | | VAR(M1) | VAR(M1) | VAR(M1) | | | NO. | ETRC IPLT
RACE | PERFORMED
110m 1 20 202 | | NPUT FAN
0.0000 | . 100E+05 | VARCM) | VAR(M) | .1018E+04 | | SONTROL SYSTEM COMPONENT OPTIMIZATION RESERVOIR AND PUMPING PLANT TRAINED | ECIFICATION THE IMIN M NWI LROPT T | MULTI-PLAN ANALYSES TO BE PERFORMED NPLANE 2 NRTICH 9 LRTIOH 1 | VAR 4 SYSTEM OPTIMIZATION
VAR 5 VAR 6
0. | FIXED COST INPUT
FDCNT
0.0000
0.0000 | E E | E H | NO W | .1018E+04 | | EM COMPONEN
ND PUMPING | JOB SP
IN 10AY
0 JUPER | I-PLAN ANAL
NPLAN 2 N | VAR
0. | A 0 0 0 | | | | | | NTROL SYST
ESERVOIR A
AINED | | MULT. | VAR 3 | | | | | .1019E+04 | | FLOOD COR
SIZING RE
UNCONSTRA | Ø 0
Z • | 71.00
88 | VAR 20. | | | | | RIABLE 1 | | | | (4) | VAR 1 | | | | | OBJECTIVE FUNCTION FOR VARIABLE | | | | | | | | | | IVE FUNCT | | | | | | | | | | OBJECT | | VAR 1 ADJ FROM | 100000000000000000000000000000000000000 | 9384.07 | 2- | Ξ σ
Σ σ | VAR(M) | VAR(M1)
.938E+04 | 083 DEV | TANCST
731,737 | ANDMG
284.417 | 0 FIN(NC) | |---------------------------------|---|-----------|--------------------------|------------|---------------------------------|---------------------|------------------|-------------------|--------------------|-----------| | | | | Sw | Ξο | .396E+04 | VAR(H1)
.938E+04 | 08J DEV | TANCST
729.021 | ANDMG
286,506 | 0 FIN(NC) | | | | | OM
Z | EO | . 392E+04 | VAR(M1) | 08J DEV | TANCST
726.305 | ANDMO
A A A B G | O FINING) | | OBJECTIVE FUNCTION | FUNCTION FOR VARIABLE 9 | .1016E+04 | .1016E+04 | | .1015E+04 | | | | | | | VAR 9 ADJ FROM | 4000,00 TO | 2948.79 | NG
1 | Ξ° | .938E+04 | VAR(M1) | 08J DEV | TANCST
660,364 | ANDMG
344,595 | 0 FIN(NC) | | | | | UN
Z | Σ | VAR(M) | VARCM1) | OBJ DEV | TANCST
658.880 | ANDMG
346,020 | 0 | | OBJECTIVE FUNCTION FOR VARTABLE | FOR VARIABLE | 100 | UM | Σ | VARCH) | VAR(M1) | 08J DEV | TANCST
657,398 | 347.476 | 0 FTN(NC) | | VAR 1 ADJ FRUM | 9384,07 10 | 9118,64 | *1005E+04 | E O | .1005E+04
VAR(M)
.295E+04 | VAR(M1)
•912E+04 | 083 DEV
0.000 | TANCST
656,170 | ANDHG
348.714 | 0 FIN(NC) | | | | | 2~ | Σ σ | VAR(M) . 292E+04 | VAR(M1) | 08J DEV
0.000 | TANCST
654,168 | ANDMG
350.656 | 0 FTN(NC) | | OBJECTIVE FUNCTION FOR VARTABLE | FOR VARIABLE 9 | .1005E+04 | NC
3
3
1005E+04 | E O | VAR(M)
.289E+04
.1005E+04 | VAR(M1) | 083 DEV | TANCST
652,166 | 352,606 | . FTN(NC) | | | | | 2 | E TO | VAR(M) | VAR(M1) | 083 057 | TANCST
641,808 | ANDMG
363,145 | 0 FTN(NC) | | VAR 9 ADJ FRUM | 2948,78 10 | 2885,32 | 2 | E T | . 912E+04 | VAR(M1)
.289E+04 | 000°0 | TANCST
651.861 | 352.917 | 0 FTN(NC) | | | | | S.W | Σ | VAR(M) | VAR(M1) | 08J DEV | TANCST
650.422 | 354.382 | 0 FINCAC) | | | | | on
2 | ¥ o | VAR(M) | VAR(M1) | 083 05.0 | TANCST
648,514 | 355,885 | 0 FTN(NC) | | OBJECTIVE FUNCTION FOR VARIABLE | "CIR VARIABLE 1 | .100SE+04 | .1005E+04 | | .1004E+04 | | | | | | | | | NC T | M1 VAR(M)
1 .289E+04 |) VAR(M1)
4 .137E+05 | 08J DEV | TANCST
711.373 | 319,365 | 0 FIN(NC) | |-----------------------------------|-----------|--|-------------------------|-------------------------|------------------|-------------------|--------------------|----------------------| | | | ¥ 0 | M1 .289E+04 |) VAR(M1)
4 .105E+05 | 08J DEV | TANCST
673,724 | 337,923 | 0 FIN(NC) | | | | Z O | M1 VARCM)
1 .289E+04 | VAR(M1) | 08J DEV
0.000 | TANCST
658,346 | ANDMG (| 0 FIN(NC) | | | | × • | M1 .289E+04 |) VAR(M1) | 081 DEV | TANCST
651,861 | 352,917 | 0 FINCAC) | | | | Σ O
U Ni
Z | MI VARCMO | VAR(M1) | 08J DEV | TANCST
649,902 | ANDMG (| 0 FIN(NC) | | | | E O
N | MI .283E+04 | VAR(M1) | 084 DEV
0.000 | TANCST
647,943 | ANDMG 0 | 0 FIN(NC) | | OBJECTIVE FUNCTION FOR VARIABLE 9 | .1005E+04 | .1005E+04 | .1005E+0 | 70 | | | | | | | | X → (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4 | M1 VAR(M)
9 .912E+04 | VAR(M1) | 084 DEV | TANCST
749.811 | ANDMG C
272.677 | 0 FIN(NC) | | | | Σ H | M1 VAR(M)
9 .912E+04 | VAR(M1) | 083 DEV
0.000 | 1ANCST
681,246 | 325,665 |) FINCED
,101E+04 | | | | ¥ | M1 VAR(M)
9 .912E+04 | VAR(M1) | 08J DEV
0,000 | 1ANCST
660.677 | 344.347 | . 101E+04 | | | | E → 2 | M1 VAR(M)
9 .912E+04 | VAR(M1)
. 289E+04 | 08J DEV
0.000 | TANCST
651,861 | ANDMG 0 | - L | | | | E →
UN
Z | M1 VAR(M)
9 .903E+04 | VAR(M1) | 083 DEV | TANCST
650.422 | ANDMG 0 | . FIN(NC) | | | | Σ →
UM | M1 VAR(M)
9 .894E+04 | VAR(M1) | 08J DEV | TANCST
648,514 | - | FIN(NC)
100E+04 | | OBJECTIVE FUNCTION FOR VARIABLE 1 | .1005E+04 | .1005E+04 | .1004E+0 | | | | | | | | | N O | M1 VAR(M) | VAR(M1) | 08J DEV | TANCST
711,373 | ANDMG 0 | 0 FIN(NC) | | | | Ж
О
О
П | M1 .289E+04 | VAR(M1) | 08J DEV
0.000 | TANCST
675.724 | ANDMG 0 | FIN(NC)
.101E+04 | | | | Σ Φ
U
V | M1 .289E+04 | VAR(M1) | 08J DEV
0.000 | TANCST
658,346 | 346,654 | * TN(NC) | | | | ¥ 6 | M1 VAR(M) | . 912E+04 | 08J DEV
0.000 | TANCST
651,861 | 352,917 | FTN(NC) | | | | E O | M1 .286E+04 | VAR(M1) | 087 DEV | TANCST
649.902 | 354.917 | FTW(NC) | | 0.00 | | E O M | M1 VAR(M) | VAR(M1)
.912E+04 | 08J DEV
0.000 | TANCST
647,943 | ANDMG 0
356.916 | FTN(NC) | | TEST LIVE FUNCTION FOR VARIABLE 9 | .1005E+04 | .1005E+04 | .1005E+0 | 7 | | | | | | | À | | | | | | | | | • | ***** | | |-----------|------------------|-------------------
------------------|---------------------|-------------------|---------------|------------------------|----------------------------------|-------|----------|-----------------------|---------| | | | • | | | | • | • | | | • | | | | | | | , vi | 13. | 15. | 17. | 19. | * 7 N | • 0M | 07. | 10 •
3 • | | | | | | 977 | 118. | 151. | 194 | 00
100
100 | 313. | 385 | 460 | 550. | | | | | | . O 87 4 | 323 | 260 | 228 | 1,464 | 1300 | 190. | | 165. | | | | | a | 4.30 | 700 | | U 1 | PLAN 1 RATIO | | • | • • • | • • | | | | | | | TAPE | EAD FROM | HYDROGRAPHS R | | PREVIOUSLY GENE | PREVI | | | | | | | TAUTO | ISTAGE I | INAN E | F 8 6 0 | J 4 | OW
IECON ITAPE
0 | RESERVOIR INFLOW
TAG ICOMP IE | .ae | POTENTIA | | | | | | | | | ×o | COMPUTATION | RUNOFF | SUB-AREA | | | | | | | | **** | ** | ** | *** | | **** | | **** | | ********* | | | . 101E+04 | ANDMG
346.654 | TANCST
658,346 | 08J DEV | VAR(M1)
•953E+04 | VAR(M)
289E+04 | E O | 2.7 | | | | | | | 0 FTN(NC) | 337,923 | TANCST
673,724 | 08J DEV | VAR(M1) | VAR(M)
289E+04 | Σ
Σ
Σ | о - | | | | | | | 0 FTN(NC) | ANDMG
319.365 | TANCST
711,373 | 08J DEV | VAR(M1) | VAR(M) | E O | 2 - | | | | | | | | | | | | .1004E+04 | • | .1005E+0 | .1005E+04 | • | VAPIABLE | FUNCTION FOR VARIABLE | JECTIVE | | 0 FTN(NC) | ANDMG
355,885 | TANCST
648.514 | 08J DEV | VAR(M1) | . 894E+04 | Ξ
Σ | OM
Z | | | | | | | 0 FTN(NC) | ANDHG
354,382 | TANCST
650.422 | 083 DEV
0.000 | VAR(M1) | VAR(M) | Σ
Σ | 200 | | | | | | | 100E+04 | 352,917 | TANCST
651,861 | 08J DEV
0,000 | VAR(M1) | VAR(M) | Ξ
Σ | Š. | | | | | | | 0 FTN(NC) | 344.347 | TANCST
660,677 | 08J DEV
0,000 | VAR(M1) | VAR(M) | ο
Σ
Σ | 0
2 | | | | | | | 0 FINCAC) | 325,665 | TANCST
681,246 | 08J DEV
0.000 | VAR(M1) | VAR(M) | HO
E | 2 4 | | | | | | | . 102E+04 | ANDMG
272.677 | TANCST
749.811 | 08J DEV | VAR(M1) | VAR(M) |
₩
₩ | 2 | | | | | | | | | | | HYDR | HYDROGRAPH ROU | ROUTING | | | | . 1 | | |---|--|----------------------------------|--|---|---|--|--|---|---------------------------------------|--------------------------|--| | | PROPOSED | JSED RESER
ISTAG
110 | WOIR
ICOM | | N ITAPE
0 0 | JPLT
0 | CPRI
CPRI | INAME | 1STAGE
0 | IAUTO
0 | | | | 0°0 | 000°0 0 | 0 A V 0 | | ROUTING DATA | 7A 10PT | Q.O.E. | IDVR | S.
R. O | | | | | 0 • 0
8 0 10 | 000°0
0°00°0 | A V G | | PLAN 2
ROUTING DATA
IRES ISAME
1 0 | 0 | dwd
Md
1 | IDVR | | | | | | | NSTPS
1 | NSTD | , L & 6 | G AMSKK | × 0
0
0 | 13X
0000 | STORA -1. | | | | | CAPMX CAPMN | MN COGL | ELEVL
975.00 | EXPL
Sol | TOO.OO. | WOIR D
RANCST | ATA
RDSCNT
.0504 | 00°
0°° | ELEVT
975.00 | EXPT
0.00 | | | | CAPACITYS
ELEVATIONS
COSTS | • • • • • • • • • • • • • • • • • • • | 2500.
1500. | 4000.
1015.
2400. | 5200.
1030. | 6800
1045 | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 11500.
1075.
4950. | 15500.
1090.
5550. | 21000.
1105.
6000. | 30000 | | LET CREST ELEVATION | UN IS 1060,71 | p-
≪ | STURAGE OF | | 9119, | | | | | | | | STORAGE | | 1097.
463. | 2245.
926. | 8YNTHETIC
4657.
1389. | TIC STORAGE 9119. | 13098,
11189. | FUNCTION
16565,
20432, | | 20229
29653 | 38969
38960 | 30000
48060 | | | | | 97. | TATION | 110, PLAN | 2, RTIO | | | | | | | 2 K K K K K K K K K K K K K K K K K K K | 200
200
200
200
200
200
200
200
200
200 | 71.
426.
582.
445. | | 83.
83.
479.
5575.
157. | 0017FL0W
94.
507.
3655. | 1006
8334
1335
1305
1305 | 10.
119.
556.
305. | 135.
573.
573.
1077. | | | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 7119
7719
935
1413
886 | 719.
763.
998.
1406.
1117. | 773.
1067.
13657.
1882. | | | STOR
720.
792.
1207.
1350.
1019.
832. | 8 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 723.
813.
1327.
1291.
966. | 7.87
8.82
9.85
8.03
8.03 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 1861-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0 | | | I NO CHE SE | | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 | 6. HOUSE NO. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19 | 24*HOUR
513*
15*
13*80
13*80
1017* | 72=H0UG
800
1330
1330
1330
1330
1330
1330
1330 | TOTAL | . VOLUME
16586.
470.
18.73
1371.
1692. | | | | | | | | R
XA | MAXIMUM STORAGE | ORAGE = | 1413, | | | | | | | # # # # # # # # # # # # # # # # # # # | 1974 | | | E | 777
1052
2287
2018
1461
1461 | | |---|--|---|--------------------|--|--|--| | | 0 t 0 0 t 0 | | | W O B O A
O W W O B A
O B A B A
O B A B A
O B A B A
O B A B A | 2007
2008
2008
1008
1008
1008
1008
1008
1008 | | | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1524
1524
10487
10487
10487 | VOLUME
19711.
558.
287
22.11
1630.
2010. | | 823.
837.
837.
875.
875. | 741.
239.
2163.
1562. | 3166. | | 128
6118
6113
4400 | 724.
033.
1469.
1764.
1070. | TOTAL | | 2000 NW 0000 CO | 731.
912.
2057.
2173. | R T07AL | | 127.
585.
624. | 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | 72-HUUR
329.
99.
22.81
1630.
2010. | 1589.
v 2, RTIO | 00.000
000.000
000.000
000.000 | 727
8907
1985
2219
1666 | 72-H0U
510U
153
34.03
3106 | | 0017700
13.
13.
13. | 821.108
116.
116.
116. | 24+HDUR
582-
16-
15-62
115-62
1156-
1156- | RAGE | 0017FL08
189.
735.
716.
519. | 840R
870.
870.
772.
723. | 24.43.42
835.43
22.443.25.43 | | 7.
99°
515°
501°
44° | | 0
************************************ | MAXIMUM STOP | 165.
165.
934.
738. | 724.
851.
1608.
2290. 2
1780. | AK 6*HOUR
7. 26.
7. 25.
26.30
4.25
6.30
464. | | 2 4 8 8 9 4 4 8 8 9 4 4 8 9 8 9 8 9 9 9 9 | | α ν ν Σ Η Σ | | 122.
142.
503.
762.
554. | 724.
831.
1445.
2309.
1838. | 0005⊢±
0005⊢±
m40 | | 7.
71.
413.
659. | 7 7 7 20 - 7 7 20 - 7 7 20 - 7 7 30 - 7 7 30 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | INCOCH
INCOCH
INCOCH
INCOCH | | 1.18.
0.00.
0.00.
0.70. | 724.
8124.
7293.
7317.
1368. | INCHE
POORT | | 57.
321.
561.
549. | 7720
7720
7760
710
710 | | | 12.
4. 94.
4. 88.
9. 3. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. | 724.
1158.
2311.
1954. | | | 00000000000000000000000000000000000000 |
11.79
11.09
11.09
12.09
14.09
14.09
15.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.09
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00 | | | 12 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 2 4 4 4 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | |---|---|----------------------------|-------------|---|--|--| | 70,
1062,
1062,
1040,
6889, | 7772
10872
2085
20885
7154
1546 | | | 1000
12077
11294
965 | 797.
1256.
4077.
4161.
3272.
2439. | | |
3800
10380
105380
10610
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810
10810 | 775
775
775
775
775
775
775
775
775
775 | | | 6.5011.
0.1408.
0.1408. | 11667
18274
18234
18511 | 5000
1000
1000
1000
1000
1000
1000
1000 | | 388
1007
1007
6936 | 738.
2970.
3065.
2005.
1653.
1653. | | S. | 468.
1180.
1157. | 7488.
30008.
40008.
40008.
3401. | Z N O | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7322
24670
24670
24055
1709
1709
172=HOUF | ,
,
,
,
,
, | LAN Z, RTIO | AMME
AMMUNO
WONWER
OVO. | 739
3300
4350
4551
8574 | 78 + HOUE
10 | | 001FLOW
18.
184.
925.
1089.
733. | 24 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | STURAGE # | 110, PL | 001FLGW
26.
377.
1356.
1337.
1024. | 2363
7363
2978
4388
3634
2758 | 24 + HOUS
1253
25 1 255
26 2 355
3068
3068 | | 17.
232.
832.
1093.
979. | 729.
2005.
2018.
3118.
28524.
1826.
1876.
1970.
1970.
1970. | MAXIMUM ST | STATION | 3331.
998.
1340.
1210. | 735,
988,
8620,
4406,
3726, | 4K 6*HOU
0.
1334
8.
38
8.38
6.62
8.66 | | 17.
198.
733.
1095.
994. | 728.
878.
1767.
3124.
2600.
1888.
1888.
CMS
CMS
ACHES
3 3 | | | 00 0000
00 0000
00 0000
00 0000
00 0000 | 734
9449.
8469.
8918. | | | 17.
645.
1094.
1008. | 728.
851.
1544.
3121.
2674.
1951.
INCH | | | 0000
0000
13300
10245
10745 | 734.
1940.
1372.
3909. | INCE
THOUS CL | | 10000000000000000000000000000000000000 | 728.
824.
824.
8304.
8017. | | | 10000000000000000000000000000000000000 | 734
670
1662
1662
1799
1799
1799 | | | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 1 8 1 8 8 9 1 8 8 9 1 8 8 9 9 1 8 8 9 8 9 | | 2000
2000
2000
2000
2000
2000
2000
200 | 974
9216
9216
9113
6524 | | |--|--|-----------------------|--|--|---| | 15000000000000000000000000000000000000 | 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | 219
845
845
1732
1732 | 8968
8627
9217
7965 | | | 595.
1496.
1885.
1476. | 0.00 20 20 20 20 20 20 20 20 20 20 20 20 2 | | 140.
754.
1768.
2333.
1746. | 830.
1818.
9311.
9097. | VOLUME
83898.
2376.
3.71
94.13
6937.
8557. | | 5.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00 | 10002
100024
10001100
10001110 | . 0.1 | 89.
1702.
1702.
2580.
1622. | 1666.
7674.
9429.
8332. | HOUR TOTAL
398.
40.
40.
40.13
40.13
627.
557. | | 45,
526,
1403,
1597,
1500, | D44 | 6687.
PLAN 2, RTIO | 665.
1625.
2808.
1774. | 18 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | #HOUR 72*H
2154* 13
61* 2 28
5 29 94
4574* 699
5272* 855 | | 001FL
399.
1313.
1593. | 7477
7477
7477
7470
7470
7470
7470
7470 | STORAGE . | 58.
58.
1539.
2993.
1787. | 762 1436.
6109.
9501.
7166. | HDUR 24:H
63.
63.
78
78
78
78
78
802. | | 1899. | 117255
366905
666805
59958
48138
6-10 | MAXIMUM
STATION | 559.
1451.
3105.
1601. | 1535.
5257.
9653.
7297. | A | | 100 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | T T T T T T T T T T T T T T T T T T T | | 5523.
1344.
3113.
1815. | 758.
1237.
4423.
9656.
7429. | OOOONT TO | | 10000 1000 1000 1000 1000 1000 1000 10 | | | 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 758.
3648.
9601.
8888. | CFS
CCFS
INCHES
MM
MM
ACEPT
THOUS CU M | | 15564 | 7444
948.
2182.
64441.
5152. | | 200
200
200
200
200
200
200
200
200
200 | 7 000000000000000000000000000000000000 | | | | 463.
1137.
8608.
3509.
1770. | 110988
11998
9888
7016 | | | | | 1338
14089
18089
18006 | ###################################### | | |--|--|--
---|-----------|-------------|---------------------|--|--|---| | | 324,
1027,
8345,
4038,
1784, | 982.
11886.
10050.
7145. | | | | | 11834
11834
11837
11810
11811
1677 | 10077
12004.
100004.
7438. | | | | 206.
960.
7586.
4613.
1560. | 888
11562
10262
10262
7274
7274 | 113 - 111 - | | | | 1330
1330
1330
1330
1693
1693
1693
1693
1693
1693
1693
1693 | 3114
14091.
11164.
7568. | VOLUME
227836*
6452*
10,06
255*
23238* | | | 131.
903.
6220.
5229.
1812. | 82%
2168,
10980,
10558,
8739,
7404, | | | • | | 120288.
170288.
17573.
1741. | 861.
13623.
11557.
7698. | 97.
97.
98.
98.
962.
38. | | | DE 826. | 795
1997
10107
10831
7832
7535 | | 11996. | LAN Z, RTIO | ST TOT ANN
B. 32 | 105623
105623
105623
105623
105623
105623
105623 | 8884
17854
11772
11578
7889 | 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | | | 007FLG
85.
758.
1834.
6513.
1701. | 1828.
1828.
1928.
11105.
7667. | ************************************** | STORAGE # | 110, PL | R CAP CO | 0UTFLO
115.
930.
7836.
9546.
2279. | 810.
2267.
11669.
12398.
9301. | 24 74 44 44 44 44 44 44 44 44 44 44 44 44 | | | 80,
693,
1700,
7129,
1892,
1715, | 1667
1667
1667
11367
7800 | 2444.
2444.
2444.
25. 231.
2404.24. | MAXIMUM 8 | STATION | RESERVOI
9118. | 108.
844.
1450.
10536.
1745. | 804.
2042.
10226.
12819.
9475. | A A A A A A A A A A A A A A A A A A A | | | 78.
630.
1568.
7686.
2223. | 779.
1512.
6387.
11605.
9277. | ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩ | | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 8000
8000
80000
90000
80000
80000 | 0 0 0 0 E F E E E E E E E E E E E E E E | | | 78.
571.
1446.
8157.
2003. | 779.
1365.
5212.
11806.
9439.
8067. | THOUS ACT | | | | 106.
672.
1628.
12537.
3710. | 802.
1616.
6967.
13603.
9911. | INC THOUS ACT | | All the second s | 78.
515.
1297.
8499.
3031.
1756. | 779.
1226.
4177.
11951.
9621.
8201. | | | | | 106.
1480.
13441.
1780. | 802.
1420.
5541.
13942.
8490. | | | | | | HYDRUG | HYDROGRAPH ROUTING |
92
2 | | | | | |---------------------------------------|--------------------------|---|-------------------|-------------------------------------|----------------------|----------------|----------------|-------------|-------| | POTENT | AL CHAN
ISTAG
1030 | POTENTIAL CHANNEL MODIFICATION REACH
ISTAG ICOMP IECON ITAPE
1030 1 | FICATION
IECON | REACH
ITAPE
0 | 1 d | JPRT
O | I NA A | ISTAGE
0 | IAUTO | | | | | ALL PLA | ALL PLANS HAVE SAME
ROUTING DATA | ¥ | | | | | | 0°0
0°0 | 0.000 | 0.00
0.00 | IRES
1 | ISAME | 1001 | 9 P M D | 10
50
10 | LSTR | | | | SST PS | NSTOL
0 | LAG | AMSKK
0.000 | × 0
• 0 | 0.000
0.000 | STORA -1. | | | | 0.
200. | | 475. | 2050. | 6100. | 3080. | ~ | 6300.
4000. | 00 | 00 | | | | STATION | | 1030, PLAN 1, RTIG | 1, RTIG | | | | | | 6 | | PEAK
941. | 6-HOUR
907. | 24-HOUR | 72-HOUR | TOTAL | TOTAL VOLUME | | | | INCHES | o o | 27. | 90 | | 8 | | 492 | | | |) <u>E</u> |) S I | | 6.10 | 16,51 | 19.49 | | 10,4 | | | | THOUS CU M | | | 550
550
550 | 1501. | 1772 | | 1436. | | | | | | X
X
Y | MAXIMUM STORAGE | A66 | 7.7.7 | | | | | | | | STATION | | 030, PLAN | 1030, PLAN 1, RTIO 2 | | | | | | CFS | | PEAK
1139. | 6-HOUR
1091. | 24-HOUR
733. | 72*HOUR | TOTAL | L VOLUME | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 32. | 31. | . K | 10. | | 590 | | | | Σ | Σ | | 7.34 | 19,73 | 23,38 | | 23,58 | . 60 | | | THUE ACTE | - 5 | | | 1454 | 1723 | | 1723. | | | MAXIMUM STORAGE = | ### PLAN 1, RTIG 3 Head | |----------------------------| |----------------------------| | TOTAL VOLUME
152725. | 71.3 | 1.0 | | | TOTAL VOLUME | 6386 | 6 | 0 ~ | 3001 | | 200 | 8642 | 4 | 25236.
31128. | | | TOTAL VOLUME | 3 | 20 | | | |-------------------------|--------------|---------------------|--------------|------------|--------------|------|--------|---------|------|----------------------|------------------|-------------------|--|------------------|----------------|------------|-----------------|---|-------|---------------------|--| | 72-HOUR
2545. | 71.3 | 15577. | 3067 | 1, RTIG 8 | 72-HOUR | 100 | 6.6 | 0 0 | 300 | 4234.
1, RTIO 9 | 72-HUUR
5087. | 777 | 42.4 | 31128. | 55055 | 2, RT10 1 | 72-HOUR
269. | 40 | | 1335,
 | | 24-HOUR
5550. | ა ა ბ | 13585. | STORAGE = | 1030, PLAN | 200 | 234 | 8.7 | 222,93 | 0266 | STURAGE = 1030, PLAN | 24- | 319 | 6 4 6
0 6
0 4 | 27580. | # *** | 1030, PLAN | 24-HOUR 472. | • 6 | 12,70 | 1154, | | | 6*HDUR
9555. | เกล | 4741.
5848. | MAXIMUM STOR | STATION | 6-HOUR | 707 | 3.7 | 2.0 | 728 | MAXIMUM STOP | 1936# | 548 | , M | 9507.
11850. | MAXIMUM STORAG | STATION | 6-HUUR
526. | • 5 • 5 • 5 • 5 • 5 • 5 • 5 • 5 • 5 • 5 | 3.0°E | 322. | | | PEAK
10191. | | | \$ | 10 | PEAK | 100 | | | | Y F | PEAK | 583 | | | ¥ | 91 | or
Non
X | S | | | | | Ω α
α α | INCHES
MA | AC-FT
THOUS CU M | | | e
Li | S E | INCHES | E L L L | , 3 | | 2.
8.4.0 | ο ο
Σ u
Σ u |) E | THOUS CU M | | | 64.5 | oo oo saacaa | × | AC-FT
THOUS CU M | | | PEAK 6-HOUR 72-HOUR TOTAL VOLUME
593, 590, 559, 315, 18904,
17, 17, 15, 9, 55,
117, 18, 18, 184
3,97, 14,51, 21,21, 1563,
293, 1069, 1968, 1968, | MAXIMUM STORAGE # 254, STATION 1030, PLAN 2, RTID 3 PEAK 6*HOUR 24*HOUR 72*HUUR TOTAL VOLUME 853, 24, 24, 13, 22, 13, 22, 13, 23, 42, 21, 02, 31, 87, 23, 49 | MAXIMUM STORAGE B 388, STATION 1030, PLAN 2, RTID 4 PEAK 6-HOUR 24-HOUR 72-HOUR TOTAL VOLUME 1018, 1015, 27, 17, 17, 1011, 29, 1,58 6,83 26,00 40,05 504, 2564, 3641, 3641, | MAXIMUM STORAGE = 474, STATION 1030, PLAN 2, RTIO 5 PEAK 6-HOUR 24-HOUR 72-HOUR TOTAL VOLUME 1260, 356, 1196, 743, 44564, 356, 1274, 197 1697 8-45 32,22 50,00 6-23, 2374, 5685, 3685, 768, 2929, 4545, 4545, | |---|--|---|---| | CFS
CMS
INCHES
INCHES
ACHES
THOUS CU M | CFS
CMS
INCHES
INCHES
AC#TT | CFS
CMS
INCHES
INCHES
ACEPT
THOUS CU.M | C T S S S S S S S S S S S S S S S S S S | MAXIMUM STORAGE # | 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | | | manus or a manuscriptor of the control contr |---|---|----------------|------------------|---------|--|------------|---------|-------|---------|------|---------|-------|------------|---|---|-------|--------|------------|--------|------------------|-------------|------|---------|-------|--------------------------|--|------|-------|---------|---|------|-------------------|------|-------|-------|-------|-------|---------------------|-----|-------|--| | 0.000 | , | ~ 6 | 2 4 | . 80 | 33 | | 67 | 5.6 | 40 | . 41 | | | ₩ | 00 | 00 | 00 | 0 | 2.5 | 20.4 | 2 | 30 | | | - •
50
K | بر
ع
2 | | 000 | | | 5.6
0.6 | 003 | 00/ | 0 | 000 | 300 | 000 | . 700 | 000 | | | 30.200 | | | | - K | • | *1 | ব | ทั้ | rn | | | 2, | | | TYP | Ö | Č | Š | ŏ | S DATA | | | ב
בינ | 2 * | | • | 190
100
101
101 | | | . 24 | 20.0 | | | £ 3d | 00.0 | 0000 | 00.0 | 00.0 | 0 H | 0,0 | 0 | | | | ₩. | | | 000 | 2 5 | 2 5 | 2 (| 2 | 0 6 | 0 | 0 | 0 | 9 | 0 9 | 2 6 | 2 5 | | 18.100 | OR THI | | | > | | | | | | | | | | | <u>></u>
سو | | | | | | | | | | | • | Z 4 . | : | 000 | | 2 5 | 2 6 | 00 | 0 | 00 | 00 | 00 | 0.0 | 000 | 9 | 000 | | 000 | AMAGES F | PLAN 1 | | I ADA | 2000 | 0 7 | . 51 | 52.0 | 7- | .05 | . 0 z | 1,59 | V V V | | TYPE | 00.0 | 00.0 | 00.0 |
00.0 | 70 | | 20 | | | | 10 | A 1 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | ا ده
د
د | Č ć | 5 ÷ | | | ×. | • | ਤ
• | • | Š. | . 7 | | | - n | | ac | 0 | | | | o or | · - | .c | ~ ~ | 1 0 | | | æ | | | Σ. | 0 | 0 | 0 | . 0 1 | :
 | 3 20 | ac | | | | | 1030 | Ε : | <u> </u> | | - 0 | 2 | 0 | 00 | c | 000 | 00 | 0 | 0 | D. (| | | | ANNUAL | 1050 | | ე
წ | 9 0 | oc
ர | 6.6 | 7.73 | 0 10 | | 9 | 33.5 | 205 | | SUN | 0 | 0 | 0 | 0 | | o a | | | | | 1030 | | 7 | ٠
• | 3 | | | r i | | ă • | æ. |)
() | 201 | 0 1
0 1 | 20 | 0 4 5 4 5 4 5 4 5 4 5 4 5 6 5 6 6 6 6 6 6 | 7 7 7 | 50,100 | R 4 GE | TION | nr. | | . ^ | | n. | 101 - | c | | 7 | | AT TON | e e | | 2 | n. | ç | (۲۰ | r. | - 4 | | .014 | | | | S TA | ¥ | • | • | | • | | | | • | | • | | • |
 | | | AVE | 1 S 41 | Ond. | Z 0 | 9 6 | 776 | 1.07 | 765 | 9 - | - C | .0. | DMG | 9 | 0.00 | 2 | 80. | 1.75 | 1.77 | 1.0.1 | 000 | | | 0 | | | | TA FO | 4 (
) | 0.50 | 0 K 2 * | | - 0 | 0 2 2 2 | 2.000 | 0 ~ ~ n | 0087 | 5670 | 64680 | 7340 | 0 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 00001 | 00151 | 21000 | NT OF | | 0 :
1 : X : I | 000 | 0000 | 160 | 1.709 | 7 CO P | 1 00 00 00 00 00 00 00 00 00 00 00 00 00 | 0.20 | 900 | AVG ANN | 1 to | FXED | FREG | 000. | 5,462 | 3.097 | 1.769 | 100 | 4 10
0 0
0 10 | 020 | 900 | | | | IC DAT | 3 | 6.6 | 2 6 | | 2 | 0 | 00 | 00 | 6 | 00 | 00 | c . | C 4 | 0 0 | 9 6 | 0.5 | ADJUSTMENT | DAM4 | | - | _ | | | 4312 | | | | ¥ | 2 | | | | | | | | | | 12276 | | | | CONDMIC | 2 | ر
د
د
د | 0 4 | ייי | ñ i | | | | | ř | • | Ň. | • | • | | ė | NO AD | 0007 | | | | | | n 4 | - | - | · ru | | 200 | 300 | | • | | | | | - n | | | | | 0.000 | |-------| |-------| | CFS 1139. 1091 CMS 32. 1091 CMS 32. 1091 CMS 32. 7.3 CMS 541 CMS 140. 1859 CMS 1940. 11679 CMS 1920. | |--| |--| | N S S E E E E E E E E E E E E E E E E E | • | # • • • • • • • • • • • • • • • • • • • | 106.
106. | | 04150
2040
2040
2040 | |---|---|--|----------------------|------------------|-------------------------------| | AC-FT
THOUS CU M | | 3120
3849. | 7435 | 800 | 8612
0623 | | | | MAXIMUM STORAGE | RAGE . | 2271. | | | | 10 | STATION | 2030, PLAN | 1, RTIO 7 | | | | PEA | 6-H0UR | 2 | 72*HOUR | TOTAL VOLUM | | S E | 10191. | 9555 | 5550 | 2545 | 152725 | | D G I I I I | £67. | * 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 157. | | | | E | | | 0 0 | 160 | • | | AC-FT | | 4741. | | - N | 3 10 | | THOUS CO M | | 8 78 | 358 | 15577. | 15577 | | | Š 5 | XIMUM 810 | 810RAGE = 2030. PLAN | 2007 | | | | bij. | | , ji., | | | | CFS | 15177. | 6-HOUR
14262. | 24.HOUR
8279. | 72-HUUR
3759. | TOTAL VOLUM | | 3 | 43 | 404 | 23.4 | 106. | 6386 | | INCIES | | 3,78 | 8.7 | 96.6 | - | | E | | 0.0 | 22.9 | 253,02 | 53.0 | | THOUS CU M | | 7076.
8728. | 16430. | 23001. | 18647. | | | | | | | | | | | | 8 39 XO-0 | .* | | | | ST | STATION | 2030, PLAN | 1, RT10 9 | | | | PEAX | 6-HOUR | 24-HOUR | 72-HUUR | TOTAL VOLUME | | CFS | 20603 | 19364 | 11267. | 5087 | 661509 | | | 583. | 548. | 319. | 144. | 8642. | | INCHES | | 5,13 | 11,94 | 13.4 | 13,4 | | | | 150,35 | 303,38 | 342,41 | 342.4 | | 4 | | 9607 | 22359 | 5236 | 25236 | | 1H008 C0 W | | 11850 | 27580. | 1128 | 31128 | | 0 | 27.
2 | 06.10
6.104
6.10
8550.
555.
84XIMUM STOR | STORAGE # 1501. | 1110 mm m | | 17369.
492.
19.47
1436. | |---------------------------------------|--|---|---|--|---------------|--| | O O O O O O O O O O O O O O O O O O O | 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 | 64ATION 2
6-HOUR 1091-
31-
7-29
7-34
541-
668- | 2630, PLAN
24-HOUR
733.
21.
21.
21.
19.73
1454. | 2, RTID Z
72*HDUR
347*
110*
23*38
1723* | 2
0 | 200
200
200
200
212
212
212
212
212
212 | | | 0.0
0.0
0.00
0.00
0.00
0.00
0.00
0.00 | ATTON
6 1900
1900
1300
1300
1300
1300
1300
1300 | 810RAGE = 2030 PLAN 2030 PLAN 24 PLAN 24 PLAN 25 | 529.
2. RIIO 3
72°HUUR
579°
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1.553
1. | | VOLUME
347338
19848
18538
28728
35438 | | | | XIMUM STO
ATION | FORAGE = 2030, PLAN R PASHIR | 890.
2, RTID 4 | | | | N N N N N N N N N N N N N N N N N N N | 00
100
100
100
100 | 243
18 - 48
18 - 4 | 140
140
140
140
140
140
140
140
140
140 | 1 | | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | TOTAL VOLUME
69450-
1967-
3.07
7.92
5743- | TOTAL VOLUME
104155-
2949-
116-86
116-86
106-23- | TOTAL VOLUME
1527256
43256
176.35
126.286 | TGTAL VOLUME
225518.
6 9 96
253.02
18647.
23001. | |--|--|--|--| | 72*HDUR
1158,
33,
30,
77,92
5743,
7083, | 1607. 2, RTIO 6 72=HUUR 1736. 49. 460 116.86 116.86 | 2271.
2, RTIO 7
72*HOUR 7
2545.
72.
6,75
171.35
12628. | 3067.
2, RTIO 8
72-HUUR 7
3759.
106.
253.02
18647.
23001. | | 24-1100
2471-
70-
2.62
66.54
6049- | RAGE = 2030, PLAN 244-HOUR 3747, 100, 88 7435, 9171. | RAGE = 2030, PLAN 24+HDUR 5550, 157, 149,44 11014. | RAGE == 2030, PLAN 24+HOUR 2349. 225.93 16430. 20566. | | 4092.
4092.
116.
116.
27.55
2030.
2504. | MAXIMUM STORAGE
STATIUN 2030
6-HOUR 24
6289.
178.
178.
1.67
42.34
3120.
3849. | MAXIMUM STORAGE
STATION 2030
6-HOUR 24
9555,
271,
271,
271,
271,
271,
271,
271,
271 | XIMUM STG
ATION
6*HOUR
14262*
14262*
3*78
96*00
706*
8728* | | 4 7 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 10101
10101
20101
A A A A A A A A A A A A A A A A A A A | M 87
15.177.
430. | | INCERSON INC | CFS
INCHES
INCHES
ACEPT
THOUS CU M | CFS
DASS
INCHESS
AC-FT
THOUS CU M | CFS
CMS
INCHES
ACHTI
THOUS CU M | STATION 2030, PLAN 2, RTID 9 CFS 20603, 19564, 11267, 5087, 505199, 2642, 1144, 6642, 13,48 INCHES 5.13 11.94 113,48 1 | NPLOD NDMG ISAME TRGT DGPRT IAGST 16 1 1 0 0 0.000 0 0 0.000 0 0 TVSF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
---|-------------------------|-------|-------|-------|-------|-------------------------|-------|----------------|----------------|--------|----------------|-------------------|---|----------------------|------------|--------------|------------|-------|------------------|-------------|---------------|------------|----------|-----------|----------------------|------------|----------|---------------|-------------|---------| | FLOD EXPECTED ANNUAL
16 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | FL00
16
18
10
10 | FL00
16
17 PLAN | | | | | | | | | | | S DATA | FL00
16
17 PLAN | | | | | | | | | | | FOR THIS DATA | | | 0.0 | 86. | 4.6 | 5 2 | 0 | 0.0 | 60 | ~ | • | 0 0 | 2 = | 9 2 |) 3 | o í | 9.4 9 | 60 | • | | A C | 0.000
0.000
0.000 | 1.500 | 5.000 | 9.800 | 800 | 3,900
3,000
8,000 | 0.800 | 3,100 | 8 000
4 500 | 4 300 | DAMAGES | PLAN | | 1 Y P.E. 1
0 • 00 | • | 0.00
0.00 | | Ρĵ | 1.50 | 33,58 | PLAN | YPE | 0.0 | 5.81 | 5. | - 0 | 3. | 1.50 | 33.5 | 00.0 | | 7A
30
20
8 | | | | | | | | | | | | 2030 | | 0000 | 00 o | 99.0 | 7.73 | 3.70 | 000 | 33,58 | 2030 | SUM | 00.0 | | | | | 1.00 | 33,58 | 00• | | ISTA
2030
2030
31ATIUN SUM | 000°0 | - 0 | 1 W I | 0 0 | 11.80 | 15,000 | 20.30 | 63,10 | 34.500 | 50 100 | AVERAGE ANNUAL | STATION | œ | - 3 | √ 1 | o ne | 小 ↔ | • | ~ = 3 | | ATION | . | ΛE | Je | ດປະທາ | ١ | D P | | | | | | 1030
1130. | 1380 | 2580 | 4220 | 4800 | 5640 | 7340 | \$5.00
0000 | 2100 | 5100 | | | | 4.000 | | | | | 000 014 | AVG ANN DMG | S FOR STATION | 850 VED 18 | 000 . 28 | 74.1 7.00 | 769 1.07
867 . 78 | 323 .39 | 095 .136 | 00.00 | AVG ANN DMG | ANN BET | | | 6,000
5,000
5,500 | | | | | | | | | | T WE | FLOUD DAMAGES FOR | | 1 941.6. | 11.59 | 200 | 6699 | 10101 | 20603 | AVG | UD DAMAGE | FLOW | 941. 6. | 1940. 3. | 4312. | 6699 | 10191 | 9 20663006 .0 | 9 A C | AVG | | | 3,7 | รู้
เกล | - 10 | | | | | | | | | |--------------------------|----------------------------|----------------------|-------------------|--|-----------------|------------|--|------------|---|------------|--| | IAUTO
0 | 43. | 278.
30. | ล้
สัญ | | IAUTO | | | | | | | | ISTAGE | | | | | ISTAGE
0 | | | | | | | | INAME
1 | # 00
00 | 333 | เกิงไ | | M N A M E | | VOLUME
40553
1147
10007
13351
41331 | | 48626
13770
13770
13770
40020
400210 | | VOLUME
81034
2295*
1.57 | | JPRT
0 | RON TA | M 0 | ด์พ่ | ** |
A
F. 0 | RTIO 1 | | RT10 2 | | RTIO 3 | 10 | | JPLT
0 | PHS READ F
17. | 233.
64. | • •
• • | | 1.7ec | PLAN 1 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | PLAN 1 | 72-HUUR
810-
23.
23.88
4021-
4960- | PLAN 1 | 72=HUUR
1351.
58.
1.57
39.79 | | ITAPE
2 | HYDROGRA
1, RATIO
4, | | • | ************************************** | IL
TTAPE | AT 30 | 24-HDUR
1433
1433
411-
16-89
2848-
3508- | A7
30 | 24-HGUR
1713.
49.
20.19
3400.
4194. | e
F | 24*HDUR
2851.
1.32.
33.60 | | Y Pool
1ECON | ENERATED
PLAN | | | COMBINE | | APHS | 6.HUUR
11306.35
13060. | တ | 6-HOUR
2571.
7.30
7.57
1275. | RAPHS A | 4375.
4375.
124.
12.89 | | FOREBA
ICOMP
0 | O MO | 2.00
2.00
2.00 | ฉัด | | TO FOR | 3. HYDROGR | V V V V V V V V V V V V V V V V V V V | HYDRUGRAPH | * | HYDROGRAPH | тои
≺ но-
Х • • | | INFLOW TO
ISTAG
30 | PREVIOUSLY
2.
64. | 123. | • •
• •
• • | ** | INFLOW
ISTAG | SUM OF 3 | | SUN OF 3 | | P. S. | 3
0 ℃÷ | | LOCAL INF | | 385.
154. | • • | | COMBINED
I | 6 | SOUNTHE
LEMEN
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL | • | INC. CP. CP. CP. CP. CP. CP. CP. CP. CP. C | | O O O O O O O O O O O O O O O O O O O | | | v.v. | 530.
183. | • • | * * * * * * * * * * * * * * * * * * * | | | | | | | | | K 6-HOUR 24-HOUR 72-HOUR
6463. 4009. 1891.
183. 114. 54.
19.04. 47.25.
3207. 7957. 9380.
3955.
9815. 11570. | AK 6-HUUR 24-HUUR 72-HUUR TUTAL
10 9579 | K 6-HUUR 24-HOUR 72-HOUR TOTAL 4050. 14690. 248. 4050. 15. 40.00 43.2 17.0 43.2 17.28 17.55. 20094. 8989. 21420. 24786. | AK 6-HOUR 24-HOUR 72-HOUR TOTAL
8. 22393. 12956. 5939.
2.63 6.01 6.89
6.01 6.89
65.97 152.68 174.98
11110. 25712. 29466.
13704. 31715. 36345. | K 6=HUUR 24=HUUR 72=HUUR
33502: 19329: 8771:
949: 547: 248:
3.89 8.97 10:17
98.70 227,78 258:39 | |--|---|--|--|---| |
CFS
CFS
CFS
CFS
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
AC
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT
ACFIT | CTS 101514 HE S S S S S S S S S S S S S S S S S S | CONSTRUCTION OF O | COTO 2340
COTO 2340
COTO 2440
COTO 2440 | 77
73
73
100
100
100
11 | | ¥0® | 0F 3 | HYDROGRAPHS | AT 30 | PLAN 1 | RT10 9 | | |--|--|---|--|--|--
--| | CFS
CAS
INCHES
AC-FT
THOUS AC-FT | PEAK
48011.
1360. | 455100R
12851.
1289.
1349.
1348.0
27858.1 | 24*HDUR
26*HDUR
1245*
310**20
5210**
54110** | 72*HDUR
1870*
1350*
1535*
745*77
36860*
72640* | דם זאר. | VOLUME
712202:
20167:
13,77
349,71
58890:
72640: | | SUM | 0F 3 | HYDROGRAPHS | AT 30 | PLAN 2 | RTIO 1 | | | NO NO CHE | 1664.
1664.
47. | 6 + HOUUR
6 + 16 + 16 + 16 + 16 + 16 + 16 + 16 + | 24-HDUR
1226-
1326-
14-55-
364-45
362- | 72*HCUR
655*
19**
19**
19**
19**
19**
1009* | 101
14
1 | 4010MR
1110MR
1100
1100
1100
1100
1100
11 | | WINS | 9
8 | HYDROGRAPHS | AT 30 | PLAN 2 | R710 2 | | | THOUS ACTIONS TH | 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 24-H
1 450
1 1 450
1 450
2 450
3 8 641
1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 72*HDUR
7780
720
22 620
380 620
560 620 | 1001AL | # # # # # # # # # # # # # # # # # # # | | 2 | UM OF 3 HYD | HYDRUGRAPHS | A7 30 | PLAN 2 | RTIO 3 | | | THUCK A COLUMN COLU | 0 W
0 C
0 C
4 C C
7 C C | 6 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 24-HDUR
24-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C | 72.H0UR
1240.
125.
1.44
36.68
76.20 | TOTAL | 740LUME
2115*
2115*
35**
617* | | E 000 | M OF 3 HYD | RUGRAPHS | 0 F | PLAN 2 | RTIO 4 | | | INCHES CANS INCHES AND A COLUMN COLUM | PEAK
4510.
131. | 0.4H0UR
4394.
12.94.
12.94
2180. | 24-HOUR
3049.
36.
1.41
35.93
6051.
7464. | 72*HUUR
1675*
47*
1.94
49.35
8311* | TOTAL | VOLUME
100514.
2840.
1.94
49.35
8311. | | The state of s | | | | A Company of the Comp | Anna Colombia de Calendario | Contraction of the o | | | PEA | 3 | 8 | 3 | VOT UM | |---|--|---|--|--|---| | - Σ | 0
0
0
0
0
0
0 | 6299
118
178
178
178
178
178
178
178
178 | 4 2218
1119
1119
120
130
130
130
130
130
130
130
130
130
13 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 137152.
3884.
67.65.
11341.
13989. | | S WIN | OF 3 HYD | DRUGRAPHS | | PLAN 2 | R710 6 | | 00 00 E F E E E E E E E E E E E E E E E | 200
200
200
200
200
200
200
200
200
200 | 6. HUUR
9428.
867.
877.
877.8
87778 | 24-HOUR
61003.
173.
7 2.83
12106.
14932. | 72.4HUUR
3 2410
9 3 92.
161076
19868 | TOTAL VOLUME
194798
5516*
3.77
95.65
16107* | | ¥
Э | GF 3 HY5 | HYDRUGRAPHS | , F | PLAN 2 | R110 7 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 6+HDUR
14017*
14017*
11.654
411.55
69548 | 24*HDUR
8974*
254*
105*75
17809*
21967* | 72#HDUR
46H10
16H10
136*38
136*38
28655
286015 | TGTAL VGLUME
278464-
7885-
5-38
136-73
23025-
28401- | | U
W∩® | OF 3 HYD | DROGRAPHS | • | PLAN 2 | R110 8 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00
00
00
00
00
00
00
00
00
00
00
00
00 | 110001
100001
100001
100001
10000000000 | 24-HGUR
149-HGUR
149-H•
176-50
2673*
3673* | 72*H0UR
7355*
8055
217*27
36588*
45131* | TOTAL VOLUME
4424650
125300
125300
217-27
35584
45131 | | SUM C | 9F 3 HYD | DRUGRAPHS | ¥. | PLAN 2 | R110 9 | | | PEAK
34011.
963. | 325884
325884
325884
36584
16566
16566 | 24-HUUR
21704.
615.
10.07
255.77
43071. | 10440UR
10450.
10450.
307.00
51698. | 1014, VOLUME
17704,
17704,
12,09
307,00
51698,
63769, | | | | | | HYDRGG | HYDROGRAPH ROUTING | LING | | | | | | |-------|---|--|---------------------------------------|----------------------|--|-------------------------|------------------------------|---|---|--------------------|---------------| | | 38 00 a0 | PROPOSED PUMPING PLANT
ISTAG ICOMP
305 | | SITE
IECON | ITAPE
0 | JPLT | JPRJ
PRJ | A M M M M M M M M M M M M M M M M M M M | ISTAGE | IAUTO
0 | | | | 0.0
0.0
0.0 | 0.0000000000000000000000000000000000000 | A V G | ROU
IRES | PLAN 1
ROUTING DATA
RES ISAME
1 | A IOPT | 0 W d H | IDVR
0 | LSTR | | | | | | NSTPS
1 | NSTDL | LAG | AMSKK
0.000 | × 000 • 0 | 15K
0.000 | STORA
*1. | | | | | RAGES | 0.
1200. | 100000 | * 0
0
0 | 00 | 00 | | • • | | • • • | ••• | | | | | | STATION | Z
O | 305, PLA | 305, PLAN 1, RTIO | | | | | | | 14. | 1114
1500
1500 | 187.
897. | 14.
225.
1078 | | 00TFL0W
15.
262.
200. | 17.
298.
1200. | 222.
335. | 12000
12000
12000 | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | 492.
1200. | | 1200. | 1200.
1200. | 1200. | 12000
12000
13000 | | 1200.
1200. | 12000
12000
12000 | 12000 | 1200. | 10001 | | 655 | | Ŋ | un e | ທັດ | ທູ້ທຸ | | STOR
5. | 900 | 112. | 11. | 18 18 0 | 18.
40. | 27. | | | 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 1017 | | 1030
691
910
910 | 1036
1036
755 | 585.
588.
588.
665. | 1016
2017
2017 | 200
200
200
200 | 3 6 N 3
0 N 0 0 | | | | 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 1200. | 24*HOUR
1200*
34* | 72 | | TOTAL VOLUME
40227.
1139. | | | | | | HOUS CUT | n Σ ← Σ
u Σ la | | 4004
4004
4002 | 23814
23814
2937 | | W • • | 1326-75
4103- | | | | | | | | MAXI | MAXIMUM STORAGE | RAGE # | 1036. | | | | | | Exhibit 3 29 of 43 | # N N N N N N N N N N N N N N N N N N N | 1098
1098
1454
1454
131 | | | # 8 9 9 8 4 8 9 9 8 9 8 9 9 9 9 9 9 9 9 9 | 2000 M M M M M M M M M M M M M M M M M M | | |---|--|---|--------------|--|--|---| | 11200.
1200.
1200. | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | # | 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 10003. | 470 M M M M M M M M M M M M M M M M M M M | | 400000
640000
640000 | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | УОЦ UME
53692.
1520.
16.36
26.36 | | ####
################################# | 117
7411
10087
10087
10087 | 101AL | m | 1000 4 2 3 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 | 11 11 11 11 11 11 11 11 11 11 11 11 11 | TOTAL
55.
004 | | #####
################################ | 11 6 11 6 11 6 11 6 11 6 11 6 11 6 11 | 1486. | PLAN 1, RTIO | 2 10000 3 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 11.
1779.
1280.
3450.
2695. | UR 72 #HD 999 910 114 444 444 444 444 444 444 444 444 4 | | 11800
1200
1200
1200
1200 | 5 TOR
1 5 S S S S S S S S S S S S S S S S S S | 14000000000000000000000000000000000000 | 305, PL | 12000. | STUR
10.
160.
1025.
3262.
3564. | 24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | |
17.
1200.
1200.
1200. | 4 2 2 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | AK 12000.
4. 32.
3. 33.
3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3 | STATION | 4 N W W W W W W W W W W W W W W W W W W | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | AK 6*HOUR
0.
12000
4.
34.
34.
34.
34.
34. | | 11 2000
12000
12000
12000 | 357.
1357.
1347.
5347. | # 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 | | # # # # # # # # # # # # # # # # # # # | 2000
2000
2000
2000
2000
2000
2000 | 00 T T T T T T T T T T T T T T T T T T | | 13 863 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 00000000000000000000000000000000000000 | THOUS CU | | 11111
000000
0000000
00000000000000000 | 2741
2741
3594
30583 | | | N N N N N N N N N N N N N N N N N N N | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | 22.23
200.
2000. | 76.
870.
870.
8587.
8187. | | Exhibit 3 30 of 43 MAXIMUM STORAGE # | | 200000
200000
200000
200000 | 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | |--------------|--|--|---|----------------------|--|---|--| | | 12005
12000
12000
12000 | 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | MWWWWW
00000000000000000000000000000000 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | | 00000000000000000000000000000000000000 | 311
294
314
3173
3173 | . VOLUME
55761•
1579•
1.08
27.38
4611•
5687• | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | VOLUME
57963•
1641•
1.12
28.46
4793•
5912• | | 70 7 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 0.0000
0.00000
0.000000
0.000000000000 | HOUR TOTAL
269-
269-
1-08-
7-38-
6611-
687- | | 11111111111111111111111111111111111111 | 84140
95140
95130
95130
95130
95130
95130
95130
95130
95130
95130
95130
95130
95130
95130
95130
95130
95130
95130 | 000R TOTAL
66.
27.
12.
12. | | PLAN 1, RTIO | 17747
17800
17800
17800 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 8 | 5904.
PLAN 1, RTI | 10000
10000
10000
10000 | 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 000 72+HC
34. 8
34. 8
• 56 1
• 58 28.
37. 5913 | | 305, | 1200
1200
1200
1200
1200 | \$108
14.
1625.
5246.
5883. | DUUR
0000
0000
0000
0000
0000
0000
0000 | STORAGE = 305, F | 0001
12000
12000
12000 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | HUUR 24*HG 2000 1200 234 120 234 14 234 234 234 234 234 234 234 234 234 23 | | STATION | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1184.
30040.
30040. | X • • • • • • • • • • • • • • • • • • • | MAXIMUM | 1800.
1800.
1800.
1800. | 250
250
250
2011
2017
215
215 | AAXIMO A MAXIMO MAX | | | 112001
120001
120000
10000 | 157.
946.
4800.
5904. | TOTI FOR SOUTH TO THE | | 12000
12000
12000
12000 | 212.
1547.
7745.
9526. | O S S S S S S S S S S S S S S S S S S S | | | 12000
12000
12000
12000
12000
12000 | 1333
1333
1330
1330
1330
1330
1330
1330 | INCH
THOUS CU | | 112000
12000
12000
12000
12000 | 1135
1135
1135
1135
9485
9485 | INCH
THOUS OF | | | 12000 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4 m m m m m m m m m m m m m m m m m m m | | | 112000
12000
12000
12000 | 19.
137.
6798.
9423. | | | 44444
44444
40000
40000 | 00000000000000000000000000000000000000 | 44444
60000
000000 | 2000
2000
2000
2000
2000
2000
2000
200 | | |---
---|--|---|---| | 112004
12000
12000
12000
10000
10000 | 101
9 858
15206
15806
15273 | 4 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 141.
1505.
15046.
23618.
24937.
24505. | | | 200000
200000
200000 | 1589866
1589866
1589866
1589866
170986
1110
1110
1110
1110
110
110
110
110
11 | 00000 0000 0000 0000 0000 0000 0000 0000 | | 6 510 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | 000000
0000000000000000000000000000000 | 43.
7047.
14703.
1581.
15434.
15434.
1002.
15434.
11.16.
129. | 10 7
12000
12000
12000
12000 | 63.
11499.
23040.
24912.
24912. | | | 11200.
1200.
1200. | ### ### ############################## | 15876.
DW 148.
1200.
1200.
1200. | 26 44 44 44 44 44 44 44 44 44 44 44 44 44 | - MIN 0 | | 1200.
1200.
1200.
1200. | ### ################################## | 305,
132,
1200,
1200,
1200,
1200, | 765 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | 86.
1079.
1200.
1200.
1200. | 404
M M M M M M M M M M M M M M M M M M M | MAXIMUM
STATION
1250
1200
1200
1200
1200 | 42.
534.
6153.
21103.
24804. | | | 8 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 102 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 12000.
12000.
12000.
12000. | 41.
432.
4706.
20215.
24631.
24848. | SOOREHE
BUNK | | 738.
1200.
1200.
1200. | 28.
2045.
12099.
15657.
15657.
15744.
18744.
TNCHES TNCHES THOUS CO M | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 23.73.
3.874.
1.918.5.
2.28.90. | I I I I I I I I I I I I I I I I I I I | | 586
12866
12866
12866 | 11286
11286
11286
11286
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386
11386 | 123.
1200.
1200.
1200. | 41.
270.
1790.
17990.
24311.
24912. | | | | 8 11 11 11 11 11 11 11 11 11 11 11 11 11 | 322
3272
3732
37310
38694 | | | 11 12 12 12 12 12 12 12 12 12 12 12 12 1 | 5000
5000
5000
5000
5000
5000
5000
500 | | |--------------|---|--
--|------------|---|--|---| | | 20000000000000000000000000000000000000 | 2625°
23671°
36885°
38675°
38418° | | | 12000
12000
12000
12000 | 259
2000
3000
3000
3000
3000
3000
3000
300 | | | | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | เหมพัพ | VOLCUM
130224
1790
31.004
5228
6448 | | 11225
1225
1225
1225
1235
1235
1235
1235 | 3234°
3234°
29601°
50581°
53730°
53747° | 1. VOLUME
04341.
1822.
1.24.
31.59
5320.
6562. | | 80 | 1200.
1200.
1200. | 7.00
7.00
7.00
7.00
7.00
7.00
7.00
7.00 | 101 AL
101 AL
102 A
103 A
104 A
105 A
106 A
107 A
108 A | RTIO 9 | 112201
12201
122000
122000
122000 | 25629.
25617.
29518.
53646.
537646. | **HOUR TOTAL
1072**
30**
1.24
31.59
5320*
6562* | | PLAN 1, RTIO | DW
12219
12200
12200
12200
12000 | 1392
1592
1592
3492
38514 | HOUR 72-HOUR 200. 34. 1054. 356 31.024 4.14 5228. 381. 6448. | PLAN 1, RT | LUW 296.
1200.
1200. | 2117
2117
21952
48670
53535 | HOUR 72
34.
34.
56.
38.
40.14 | | 305, P | 195.
1200.
1200.
1200. | 8108
1115.
12719.
33992.
38614. | 900R 24#
114#
154
554
354
358
8408 | 305, | 1200.
1200.
1200.
1200.
1200. | STOR
98.
1677.
18156.
47387.
53392. | HOUR 24 | | STATION | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 866
876
10135
38878
38648 | PEAK
200.
34.
120
34.
34.
77. | STATION | 11122001
1122001
122000
12000 | 1304°
14601°
15334°
53212°
5366° | 0000
0000
0000
0000
0000
0000 | | | ###################################### | 7848.
31546.
38115. | OOOTE TO | | 12000
12000
12000
12000 | 1144902
44002
44448
574488
534486
53446 | S S S E F E | | | 12000
12000
12000
12000
10000 | 5 6 6 10 5 10 5 10 5 10 5 10 5 10 5 10 5 | I I VOICE | | 400000
400000 | 82.
8760.
41814.
52706. | I NO HE | | | 11111111111111111111111111111111111111 | 61.
385.
4448.
37644. | | | 12000
12000
12000
12000
12000 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | | | | | ••• |--|------------------|----------------------|---------------------------|----------------|-----------|------|---------------------------------------|------|--------------------------|---------|--------------|------|---|-------|--------|-----|-----|-----|---------|------|---|---------|--| | | | | | • • | | • | 380 | 9 9 | 582 | 20. | 127 | | 227. | | 0 | • • | 000 | • • | | | | | | | LSTR | | • • • | | 0000.
8570. | | | 320 | ~ ~ | 308 |
14. | \circ | • | 251 | | •
• | | • • | • • | | | | | | | IOVR | STORA .1. | ••• | F 0 7 | 960. | | - 51 | 279 | 20 | 336 | ŏ | 93, | 2.90 | 277. | | o = | | ó | • | | 1084 | 4 | M 10 65 | | | a 6
¥
a | 15K | | PDSCNT
• 05040 | æ F | | c n | 247 | 200 | 921. | 7. | 82. | 601. | 307. | | 0 | | 0 | • | TOTAL | | | | | | IOPT | ° ° ° ° ° ° | •• | DATA
T PANCST | •0009
•0009 | 2, RTIO 1 | 4 | | .00 | 397. | ທ້ | ~ - | 7. | 341.
132. | | • | * * | 0.0 | • • | 72-H0UR | 18. | 18.80 | 3165 | | | AN NO | AMSKK
0.000.0 | •• | PEANT
PERCS | 2000° | 305, PLAN | | • | | 138. 10. | 40. | | | | MPING | • | | *** | | 4.HOUR | 33. | 53.55 | 2283 | | | PLAN
ROUTING
IRES ISA | LAG
0 | • • | PUMPING
PMPON
1500. | 1000. | | 3.4 | 190 | 1200 | 1138 | ഗ ഹ | 500 | 0 | 379 | ā | 00 | | | 0 | A. | | 5.54 | 734 | | | 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | NSTDL
0 | | Σ O
Δ
0 | 5000 | STATION | . 7 | 405 | 10 | M 4 | ហ្វឹ | 2000
0000 | | 157. | | 00 | | 00 | • | • | 1. | | | | | 000°0 | S t bs | 100000 | PMPMX
100001 | 100 | | 14 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 500 | 516. | េរភ | 4 W | 6 | 172. | | • c | | • • | | PEA | 0° ₹ | | | | | 0 0 0 0
0 0 0 0 | Ž | 1200. | | 250. | | | . 0 | | - | • | | | | | .• .1 | | | • | 1 | | N E E | AC-FT | | | a | | • • | | • • | | - | 107 | 1200 | 120
130
130
130 | | 193 | 57.5 | 7 6 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | 00 | • | | • | | | | THOUS | | | | | STORAGE=
CUTFLOW= | | CAPACITYE | | | 83,0 | 1200 | 1200. | 'n | 156. | 548 | 207 | | | 0 | 0 | • | | | | | | | | 72.
448.
1200.
1200. | 40000 C 400 | 60000 | | 0000 Mm | 1111
1111
1111
1111
1111
1111
1111
1111
1111 | |--------------|--|--
---|---|--|--| | | 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | + 1 | | | 5.005
11200
12000
12000
12000 | 133339
133339
14007
1007 | | | 12000
12000
12000
12000
12000
12000 | 116881
11688
11688
1883
1883
1883 | VOUL
45044
1246
1246
1246
1246
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376
1376 | 8 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | N 10000
N 10000
N 10000
N 10000 | 18.
172.
1171.
1171.
1419. | | ~ | 2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 8 97 97 8 994 8 99 | 00.
00.
00.
00.
751.
21.
2.187 | , w | 1200
1200
1200
1200
1200 | 13.
1522.
1666.
1489. | | PLAN 2, RTIO | 110000
10000
10000
10000 | 2 4 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | ~ | N N N N N N N N N N N N N N N N N N N | 4 4 4 4 4 | 11
14
14
14
14
15
15
15
15
16
16
16
16
16
16
16
16
16
16
16
16
16 | | 305, PL | 00TFLOW
18.
227.
1155.
1200.
1200. | 3408
3405
3405
759 | U 000000 N | DRAGE
305, | 356.
1200.
1200.
1200. | STOR
10.
119.
692.
1585.
1450. | | STATION | 1944.
991.
1200. | 448 W O O O O O O O O O O O O O O O O O O | 0000
6 = HDUNR
8 0000
1000
1000
1000
1000
1000 | 595,
734,
MAXIMUM S | 28.
308.
1200.
1200. | 9.
103.
1495.
1495. | | | | | т и
п о м
А о ф | | | | | | 112000 | 0.000 W W W W W W W W W W W W W W W W W | ၁၀၀၁¢ဝ
၈၈၈ ∑ | FΣ | 1111
1000000
1000000000000000000000000 | 87
87
1392
1465
1277 | | | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 43.
779.
846. |
200000 | ACAF | 2 28
2 13 0
1 2 0 0 0
1 2 0 0 0 | 1363
143
1438
1438 | | | 552.
552.
1200. | 184
735
475
473 | | | ###################################### | 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | | 00000 | | | 68 | 0000 | 3 . | 1 N S | | 1247 | 0 | 0 4 | 0 | 00 | | | | | | | |---|-----------|------------|---------------------|--|-------------|----------------------------|------------------|--------------|-----|-----|--------------------------------------|-----|-----------|--------|------|----------------|-------|---------| |
************************************** | | | 100 | M M M M | 2 | о от м
м чо о
м чо о | 3 00 1 | 1 N | • | 0 0 | 2885. | 00 | | | | | | | | L VOC 00000000000000000000000000000000000 | | | 00 | 000000000000000000000000000000000000000 | | | 3 77 (| 2 ~1
2 ~1 | • | 0 | 20 | 00 | AL VOLUME | 5405 | 1.04 | 26.54 | 5513. | | | 7 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - | | RTIO 4 | 55° | ###################################### | • 0 0 2 4 | | 2 - - 2 C | W to | • 0 | 0.0 | 2885 | • • | 101 | | **** | 45.54 | | | | NG 00 00 00 00 00 00 00 00 00 00 00 00 00 | 1625. | PLAN Z. RT | 0W
45
548 | # # # # # # # # # # # # # # # # # # # | 3 | | 1 00 1 | 36 | ING | | | 20 | R 72* | • | 0 | 381. 426 | | = 1705 | | 0000 000 000 000 000 000 000 000 000 0 | STORAGE = | 305 | 007FL
41.
80. | * * * * 000000000000000000000000000000 | v | S 14 0 | ונהם | 50 KG | ₹ . | | | 00 | -72 | - | | 3.54 16
595 | . N | STURAGE | | 0000
0000
0000
0000
0000
0000
0000
0000
0000 | MAXIMUM | STATION | - 3 ↔ | 2000
2000
2000
2000
2000
2000
2000
200 | > | 13.
13. | 1517. | 269 | 0 | 0 | 2885
5 | 0,0 | EAK 6 | 00. | • | -, - | | MAXIMUM | | | | | M 2 | 0000 | • | 10.0 | 596 | 1336. | • | | 8 | 85 | | CFS 12 | E L | Σ÷
L | Ē | | | 28 895.
00.
00.
00.
1 I I I I I I I I I I I I I I I I I I I | | | . V. | 1200
1200
1200
1200
1200
1200
1200
1200 | 1600. | 13. | ນ ໝ | ~n .c. | 0 | | | 00 | | | O.H. | • | THOUS | | | | | | 0.0 | 11.200
12.000
10.000 | ~ | 20 TO | 500 | 1484. | 0 | | 0
0
0
0
0
0
0
0 | 0 | | | | | | | | M W W W W W W W W W W W W W W W W W W W | 200 00 00 00 00 00 00 00 00 00 00 00 00 | | 10000 M | |--|---|--|--| | 11111111111111111111111111111111111111 | 4 4 4 4 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 40000 00 00 00 00 00 00 00 00 00 00 00 0 | | 110 011
10 01 01
10 0 0 0 0 0 0 0 0 0 0 | 1200
200
200
200
100
100
100
100
100
100 | 2888000
2621 888500
2621 8850
2650
5750
5750 | 11111111111111111111111111111111111111 | | 7853.
1200.
1200. | 0 NOFNN3 | 2885.
2885.
2885.
2885.
2885.
77.
77.
61.
66. | 6 11 11 12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15 | | OM 7554. | 1112000
120002
120002
12100
12100 | 2885.
2885.
2885.
2885.
2885.
0.
0.
0.
14.
72.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14 | PLAN 2, RTI
1087,
1200,
1200,
1200,
1200,
1200,
1200,
1200,
1200,
1200,
1200,
1200,
1200,
1200,
1200, | | 00TFL0
5683
12000
12000 | 1200.
220.
221.
1774.
2946.
1406. | PUMPING 0.0.0.2885.2885.2885.2800.2800.2800.344.344.345565.3554.3754.3754.3754.3754.3754.3754.375 | 305, PL/
0UTFLOW
88.
953.
1200.
1200.
1200.
1200.
1200.
1200.
1200.
1200. | | 577.
1200.
1200. | 200 W C | A 0 4 | MAXIMUM
STATIUN
828.
1200.
1200.
1200.
1200.
1200.
2146.
5391. | | 1224
1224
1220
1220
1230
1230
1230
1230
1230
1230 | 1200
100
100
100
2955
100
1071 | TENET E CO | 112000
12000
12000
12000
12000
1200
120 | | 1111
1000
1000
1000
1000 | M → L Q M Z | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 12000.
12000.
12000.
12000.
1351.
53373. | | 2000 400 000 000 000 000 000 000 000 000 | 1000 0000 0000 0000 0000 0000 0000 000 | 000 K W W W W W W W W W W W W W W W W W | 28.
1200.
1200.
1200.
1200.
1200.
148.
148.
55107. | | N N N N N N N N N N N N N N N N N N N | | | | 90 | 000 | 0000 | _ | n
o | 1252 | 11154 | 10387 | | • | ου
00 | ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស | | |---|---|-------------------------------|----------|------|------|------|---|------------|---|--------|-----------------|-----|---------------------------------------|---------------------------
---|---| | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | 343 | 0021 | 000 | 1000 | 1144 | 964 | 11096. | 10524.
8895. | | . | Ø: | ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេស
ស្លេ
ស្លេ | | | • • • • • • • • • • • • • • • • • • • | X00LUME
16646.
1666.
23. 14.
59858.
59858. | | | 1200 | 00 | 000 | • | 79. | 778 | 10991 | 10653. | | •
• | 885 | N N N
S S S
S S S
S S S
S S S S | > 0
1 0 - 0 m 0 | | 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 1018
1018
1018
1018
1018
1018
1018
1018 | ^ | | 172. | 1200 | 0000 | • | 57. | 7 6 6 4 4 5 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 | 10833. | 10772.
9256. | | • •
• • | 80 | ທຸກທຸກ
ໝູ່ສອດ
ໝູ່ຄອດ
ໝູ່ຄອດ
ໝູ່ຄອດ | # * * * * * * * * * * * * * * * * * * * | | | MUCOUR 72=HUCOUR 8400 9400 9400 9400 9400 9400 9400 9400 | 5936.
PLAN 2, RTI | 3.
0. | 141. | 1200 | 200 | • ^ ^ 3 | 47. | 539 | 10620. | 10880, | ်က် | • • • • • • • • • • • • • • • • • • • | 2885 | N N N
00 00 00
00 00 00
00 00 00
00 00 00
00 00 | TO 7007 | | PUMPING
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0. | 25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.0000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.0000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.0000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.0000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.0000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.0000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.0000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.0000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.0000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000
25.000 | STORAGE NOST | | 30. | 1200 | 1000 | • ^ ^ 1 | STOR
43 | 45.50 | 0353 | 10976, | ä | . | 800 | * * * * * * * * * * * * * * * * * * * | 2 4 4 4 4 4 | | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 700
400
24
24
10
10
10 | MAXIMUM
MAXIMUM
STATION | | 125. | 1200 | 1200 | •
> | 41
VI | 387 | 10030. | 11057. | | 00 | 2885 | N N K
B B C
N B B C
N B B C
N | | | • • • • • • • • • • • • • • • • • • • | 0002-7 | | | 124. | 1200 | 1000 | * | 41. | 30 | in. | 11120. | | . | 885 | 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | INCHE
CA
A AC. | | | 801. | 000 | 1000 |)
} | 41. | 2049 | 9217 | 11160. | | ဝီ မ | 2885
505
705
705 | , , , , , , , , , , , , , , , , , , , | | | ာဘဝတ် ဟို ဟို
တေဆာင် လေဆာင်
လောက်လေ
လောက်လ | | | | 123 | 1000 | 1200 | | 41. | 211. | οc: | 11173. | | • •
ວ່ວ | 0 1 | N N N
8 8 3
1 N N N | | | | # 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 228
13968
13968
22597
23130
21651 | | |--------------|--|--|--| | | 44444444444444444444444444444444444444 | 1602
1802
1802
1802
1803
1803
1803 | 0000
0000
00000
00000
00000 | | | MUNUNU
400000
300000
300000 | 115.
1343.
11027.
23312.
21992. | 2885.
2885.
2885.
2885.
2885.
1771.
1771.
1.71.
5271.
6286. | | 99 | NA N | 10974
95164
23372
22156 | 2885.
2885.
2885.
2885.
2885. | | AN Z, RTIO | 209.
1200.
1200.
1200. | 70.
8026.
20484.
23406. | 28885
28885
28885
28885
728885
728885
728885
1048
1048
1048
1048
1048
1048
1048
1048 | | 305, PLAN 2, | 1200.
1200.
1200.
1200. | 810R
73C*
6586*
19689*
23406* | PUMP ING R 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | STATION | 11111
00000
000000
0000000000000000000 | 5566
18746
23346
23356 | X X X X X X X X X X X X X X X X X X X | | | 1800.
1200.
1200.
1200. | 61.
474.
4074.
17737.
23266. | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | 11111111111111111111111111111111111111 |
361.
3115.
3115.
16582.
228112. | 2885.
2885.
2885.
2885.
2885.
2885.
1 NCHES AC. FT | | | 180
180
1800
1800
1800
1800
1800 | 361.
2398.
15323.
23016. | , , , , , | | VULP#1905040• | | | 0 X I O X I | CAP COST 6 | T FOOT SET | S NA | | | | |---------------|--------------------|----------|---|-----------------|-------------|---------------|---------|--------|-----| | | | | 2865 | | 108 | 330 | | | | | | | | | OUTFL | | | | | | | 246. | 246. | 247 | 250. | 259 | 283 | 338 | 457. | 653 | | | 1195 | 1200. | 1200. | 1200. | 1200 | - | 1200. | 1200. | 1200 | - | | 1200. | 1200 | 1200. | 1200. | 1200. | 1200 | 1200. | 1200 | 1200 | | | 1200. | 1200. | 1200. | 1200. | 1200 | 1200 | 1200. | 1200, | 1200. | | | 1200 | 1200. | 1200. | 1200. | 1200 | 1200 | 1200 | 1200. | 1200 | | | 1200. | 1200. | 1200. | 1200 | 1200. | 1200 | 1200 | 1200 | 1200 | | | | | | | S. C. | | | | | | | C of | 8 | oc
oc | 7. 8 | | 94. | 113. | 152. | 8 | | | 3005 | 10
3 30
3 30 | 674 | 200 | 1001 | 1360 | 1676 | 1816 | 2071 | | | 3307 | 4427 | 5857 | 7573 | 6756 | 11739 | 14086. | 16526 | 18985 | N | | 23637 | 25730 | 27641. | 29357 | L. F | 32183 | 33307. | 34262 | 35065 | , C | | 36256 | 36671. | 36989 | 37228. | | 37507. | 37561. | 37569. | 37541 | * | | 37406. | 37309. | 37197. | 37073 | | 36802. | 36655. | 36503. | 36346. | m | | | | | | GNIGNUG | CZ | | | | | | 0 | 0 | 5 | 0 | | | • | •0 | 0 | | | 0 | •0 | •0 | | | 0 | •0 | 2885 | 2885 | | | 2885 | 2885 | 2885 | 2885 | 2885 | 2885 | 2885 | 2885 | 2885 | _ | | SAAS. | 2885 | 2885 | | | 2885 | 2685. | 2885 | 2885 | | | 2885 | 2885 | 2885 | | | 2885 | 2885 | 2885 | 28.85 | | | 2885 | 2885 | 2885 | 2885 | | 2885 | 2885 | 2885 | 2885 | | | | | | | 6*H0UR 24* | 24*HOUR 72* | 72-HOUR TOTAL | LVOLUME | | | | | U | Sign | | 1 | | | | | | | | S | 8 | 34. | | | 30. | 1809 | | | | | INCH | ES. | | .14 | | 1.23 | 1,23 | | | | | | ΣΣ | | 3.54 | | 31,37 | 31,37 | | | | | AC+FT | بالإ | | | 2381, 5 | | 5282 | | | | | THOUS CO M | Σ | | | | 515. | 6515 | MAXIX | MAXIMUM STURAGE | 37569 | | | | | | | | | | | | | | | | | AANCST
0.00000 | | | | |---|--|---|-------------------| | ADSCNT
O.00000 | | | | | COMPUTATION
IAQST
0 0 | | | | | DO DAMAGE
T DGPRT
0.000 | | | | | 7.
1.000 | | | | | EXPECTED ANNUAL NOMG ISAME | 1 TYPE 2 0.000 10.500 15.000 55.000 50.000
50.000 50.0000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.0000 | 77 | 31.21 | | N S S S S S S S S S S S S S S S S S S S | | | . 70 | | NFLOD
10 | 305
TYPE 1
0.000
37.500
1125.000
3155.000
5850.000
7055.000
10550.000 | 4 L 0 100000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 301.7 | | Z
∢ M | | A | 315.88 | | 30 | | . 프로그 : | 315 | | | 914110
1175
1175
1175
935
935
111835
AVERAGE | PR 81 P 7 III P 8 P R I B 1 I I I I I I I I I I I I I I I I I | DMG
BFT | | | | | O NNA
NNA
B | | | A -Warwoored F | A A A A A A A A A A A A A A A A A A A | 9 A V G . A | | | A P D U C C C C C C C C C C C C C C C C C C | 000 DAM
1 STOR
1 1 A B A A A A A A A A A A A A A A A A | | | | 2 | T C - M a N a V a v a v a v a v a v a v a v a v a v | | | | PEAK FLOW AND | AND STORAGE (E | C N S | F PERIOD)
CUBIC FEE
REA IN SQU | SUMMARY
T PER SE
ARE MILE | FOR MULTIPLE
COND COUSIC
S (SQUARE KI | PLAN-RATIC
METERS PER
LOMETERS) | C ECONOMIC
SECOND) | COMPUTATION | 8 20 | | | |---------------|---------------|-----------------|---------------------------------------|--|--|---|--|---|---|--|---|---| | OPERATION | STATION | AREA | PLAN
PLAN | ATIO 1 | RATIO 2 | RATIOS APP
RATIO 3 | KATIO 4 FLI | HATIO S | RATIO 6 1 | RATIO 7 | RATIO B | RATIO 9 | | HYDROGRAPH AT | | 35.10
90.91) | , , , , , , , , , , , , , , , , , , , | 1343.
38.02)(
1343.
38.02)(| 1611.
45.62)(
1611.
45.62)(| 2685.
76.033(
2685.
76.03)(| 3759.
106,44)(
3759.
106,44)(| \$370.
152.06)(
5370.
152.06)(| 8055.
228.09)(
8055.
228.09) | 11814.
334.54)(
11814.
334.54)(| 17453.
494.20)(
17453. | 23628.
669.073
23628.
669.073 | | коитео та | | 35.10 | - ~ | 1343.
38.02)(
590.
16.72)(| 1611.
45.62)(
661.
18.73)(| 2685.
76.03)(
940.
26.61)(| 3759.
106.44)(
1095.
31.01)(| 5370.
152.06)(
1340.
37.96)(| 8055.
228.09)(
1599.
45.29) | 11814.
334.54)(
3113.
88.15)(| 17453.
494.20)(
8668.
243.74)(| 23628.
669.07)
10282.
404.42) | | ROUTED TO | 1030 | 35,10
90,91) | + ~ ~ ~ | 941.
26.65)(
529.
14.98)(| 1139.
32,24)(
593.
16,80)(| 1940.
54.94)(
853.
24.15)(| 2921.
82.71)(
1018.
28,84)(| 4312.
122.10)(
1250.
35.67)(| 6699.
189,70)(
1535.
43,47)(| 10191.
288,58)(
2601.
73,67)(| 15177
429.7736
7263. | 20603.
583.423
12276.
347.633 | | НҮВЯОСРАРН АТ | 20 (| 35.10
90.91) | - ~ ~ ~ ~ | 1343.
38.02)(
1343.
38.02) | 1611.
45.62)(
1611.
45.62)(| 2685.
76.03)(
2685.
76.03)(| 3759.
106,44)(
3759.
106,44)(| 5370.
152.06)(
5370.
152.06)(| 8055.
228,09)(
8055.
228,09)(| 11814.
334.54)(
11814.
334.54)(| 17453
494.201
17453
494.201 | 23628.
669.07)
23628.
669.07) | | ROUTED TO | 2030 | 35.10
90.91) | ~ ~ ~ ~ | 941.
26.65)(
941.
26.65)(| 1139.
32.24)(
1139.
32,24)(| 1940.
54.94)(
1940.
54.94)(| 2921.
82.71)(
2921.
82.71)(| 4312.
122.10)(
4312.
122.10)(| 6699.
189.70)(
6699.
189.70)(| 10191.
288.58)(
10191.
268,58)(| 15177
429.7730
15177
429.7730 | 20603.
283.423
20603.
563.423 | | НУВКОСКАРН АТ | 30 | 10.00 | , | 453.
12.81) (
453.
12.81) (| 543,
15,38)(
543,
15,38)(| 905
25,63)(
25,63)(| 1267.
35,88)(
1267.
35,88)(| 1810.
51,25)(
1810.
51,25)(| 2715.
76.88)(
2715.
76.88)(| 3982,
112,76)(
3982,
112,76)(| 5885,
166,57)(
5883,
166,57)(| 7964.
225.52)
7964.
225.52) | | 3 COMBINED | 30 | 80.20 | _ ~ ~ ~ | 2219.
62.84)(
1664.
47.13)(| 2676.
75.79)(
1968.
55.74)(| 4563.
129.21)(
3196.
90.51)(| 6859.
194.23)(
4616.
130,72)(| 10154.
287.53)(
6625.
187.60)(| 15693,
444,39)(
9960,
282,04)(| 23748,
672,47)(
14769,
418,21)(| 35345,
1000,86)(
22446,
635,59)(| 48011.
1359.53)
34011.
963.08) | | ROUTED TO | 305 | 80,20 | - ~ ~ ~ | 1200.
33.98)(
1200.
33.98)(| 1200.
33.98)(
1200.
33.98)(| 1200.
33,98)(
1200.
33,98)(| 1200.
33.98)(
1200.
33.98)(| 1200.
33.98)(
1200.
33.98)(| 1200.
33.98)(
1200.
33.98)(| 1200.
33.98)(
1200.
33.98)(| 1200.
33.98)(
1200.
33.98)(| 1200°
33°98)
1200°
33°98) | | | | | # → `N | EAK STORAG
1036.
1278.)(
607.
749.)(| GES IN ACR
1486.
1833.)(
897. | E FEET (100
3587,
4424,)(
1625,
2004,)(| 0 CUBIC ME
5904
7285)(
1705 | 7ERS)**
11788,)(
2967,
3660,)(| 15876.
19583.)(
5936.
7322.)(| 24937
30760.)(
11173
13782.)(| 38699
47734.)(
23406.
28871.)(| 53876,
66255,
37569,
46341, | | 2885.
2885.
0. | | | | | | | | | 7 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | |----------------------|--|--|--------------------|--|----------------------|---------------------------------------|------------------------------|--|---| | • •
• | 6 | | | | 824. | 173, | * * * * | | TBNFT8 900. | | | OF OULLAR | 378. | 274 | 353. | | | BENEFITS | | ANDMG 277. | | • | PERFORMANÇE SUMMARY
NURMALLY 1000'S OF DOLLARS) | | | * * | * | * | SYSTEM NET BENEFITS **** | | ANDGBS
1177. | | | AND PERFUR
T = NORMAL | * * | CEMENT COST | TTIONS * * | 16) × × × | * * * | - MAXIMIZE | | TANCST
742. | | •
0 | SYSTEM COST AND
SAME AS INPUT : | * * * * * * * * * | AND REPLACEMENT | EXISTING CONDITIONS OPTIMIZED SYSTEM * | REDUCTION (BENEFITS) | * * * * * * * * * * * * * * * * * * * | | | ANOMPR
301. | | • | SYIND SYIND | CAPITAL COST * * * * * * * * * * * * * * * * * * * | ANNUAL COST * * | | | SYSTEM NET BENEFITS | ***** OPTIMIZATION OBJECTIVE | | ANFCST
440. | | • | | | SYSTEM ANNUAL O,M, | VERAGE ANNUAL DAMAGES | ANNUAL DAMAGE | MNUAL SYST |
I-60 *** | | TFCST
8740. | | 110 | | TOTAL SYSTEM | OTAL SYSTEM | VERAGE AN | VERAGE AN | IVERAGE ANNUAL | | | | ## EXHIBIT 4 SIZING RESERVOIR AND PUMPING PLANT (Hydrologic Performance Constrained) | | | | | 065 | 3000 | 2720 | 5 4
5 4 | 3 :A | | | R = REVISED | ()= REVISED | • | 1120 | 7200 | | | | | Ų | | 6480 | | | | 4.7 | • | : | | 004 | 3000 | 2720 | 280 | |-------|---|----|------------------------------|------------|------|------|------------|------|----------------|--------|-------------|-------------|-------|------|---------------|-----------|----|------|-------|--------------|-----------|----------|-------|----|------------|-----|------|------|----------------|---------|------|---------------|----------| | • | a 10
• 0
• 0
• 0
• 0
• 0 | | | : ∩ | 920 | | n 0 | | | | | | 0 | 1105 | 000 | | ٥٠ | | | ÿ | • | 5620 | | • | | 0.4 | | • | | | | 3330 | | | | 3,23 | | | - | • | 3980 | - 15 | \ \? | | | | 9 | 15500 | 100 | 53 | | | | | • | | 4800 | | P. | | | a . | | | 2.7 | Š | 3980 | 0.4 | | | 0
8
8 | | | 190 | 1040 | 0097 | 0 O | ٤, | | | | - F | 11500 | 1075 | 4950 | | 1 | 6300 | 24000 | • | | 4220 | | 3 | | O . | 7.6 | | | 190 | 1040 | 0097 | ر
د د | | | 1.50 | | | 8 | 910 | 5100 | n 99 | Š | N | | - | 100 | 0006 | 1060 | 4350 | | | 3080 | 10250 | برد
- ارد | 000 | | 21000 | | - | N = | • • | | | 5
80 | 910 | 5100 | () | | | 000 | | | 30 | 70 | 5370 | 1 | 2 | | • | 0 | i. | 0089 | 1045 | 6 | TON REAC | - | 2135 | 919 |) v | 70 | 2280 | 15100 | ۳. | ر
د | | , 14 | 27.8 | | Š | 078 | 5370 | 443 | | | 0.70 | | M INFCOM | 33 | 800 | 5360 | 25 | î | | - | | 975.0 | 5200 | 1030 | 3000 | MODIFICAT | | 076 | 2020 | - S. | | 1740 | - | ~ | ∾ <i>1</i> | | , | 23.0 | | 33 | 90 | 5360
• 550 | ה
מ | | | • \$ • 0 | | 25 . 01 | 33.1 | 760 | 5050 | 120 | 35 | 3F0V078 | | | 200 | 0007 | 1015 | 0072 | HANNEL | | 475 | 1020 | د
د د | - | 138 | 6 | 7 | ۰
• | , e | | • | 15. | 2 | 760 | 5080 | > 1 | | - 0 | 0.30 | 0, | 7 | 24 | 710 | 1840 | 160 | 38 | 110
1350 pr | :
: | | 0 | 0 | 0 | 000 | _ | | | 00.2 | | | * | 3 | 0 | • | 9.0 | • | 15.6 | >
U | 72 | = | 1840 | , | | \$6)^ | 5000
• 5000 | 0 | ֓֞֝֞֝֞֝֞֝֝֟֝֝֝֟֝֝֝
֡
֓ | 7.2 | 060 | 2200 | 215 | 07 | neuer . | | | 2000 | • | 765 | > - | POTEN | | • | 0 2 | > . | . 25 | | 075 | 0 | • | | 0 | 13.7 |) - | 24 | 099 | 000 | | | | | | | | | | | | <u>LEGEND</u> | N = NEW INPUT DATA | | () = KEVISED INPUT DATA | | | | | | | | | | | | | |----------------|------------|-----------------------|----------|-----------------|------|-------------|------|--|---------------|--------------------|---------------
--------------------------|-------|------|---|--------|------|-------|-------|---------|-------------|-------|-------|------------| | | 38. | 6480 | 16.4 | | | 1000 | 000 | ٣. | ₹° | | | | | | | | | | | | 7007 | 76000 | 11250 | 3 & S | | • | | 2620 | 13 | | | 247 | 1110 | 25 | <u>.</u> . | | | - | | | | | | | | | .005 | 20000 | 10650 | 240 | | | ٠, | 4800 | e.
:: | | | | 1330 | 155 | 20 | | | | | | | | | | 00001 | >
D | .01 | 37000 | 0006 | 300 | | 6300
24000 | ٠. | 4220 | 9
• | - | | . 63
7 | 1530 | 800 | 2 O | | - | | • | | • | | | | 7860 | | ₹0. | 28000 | 7050 | 300 | | 3080
10250 | | 3200
3200
21000 | 50.1 | | | 2 Y | 1690 | 200
200
200
200
200
200
200
200
200
200 | 32 | | ~ | | | | | | | 7020 | 0000 | (A) | \$0. | 20000 | 5850 | 202°2 | | 2135
6100 | , S | 2280
15100 | 2 4 4 C | | | . 1.
280 | 1810 | 330 | 3= | P 00L | ļ. | 0 | | | | | | • 023 | 2300 | (2009) |)°1° | 12500 | 3150 | Sol | | 2020
2050 | | 1740 | 30.28 | TO FUREBAY POOL | | 265 | 1800 | 2
3
3 | ; # | TO FOREBAY POOL | LANT SIT | - | | | - | | | 001 | 1600 | | <u>ن</u> ٥٠ | 7000 | 1125 | 0.30 | | 475
1020 | - n c | 10000 | 9.0 | LOW TO FO | 10.0 | 255 | 1650 |
 | • | INFLOW TO | PUMPING PLANT | | 10000 | 1200 | | 100001 | 1200 | 000 | 1000 | N | • 45 | 0007 | 75. | • | | 0 0 0
0 0 0 | ູ້ທີ່ | 1130
8540 | 23.1 | o z | | 230 | 1540 | | <u>.</u> | N
N
N
N | ROPOSED P | | | 1200 | | 400 | 1200 | 25.0 | 670 | <u></u> | 09 | 0052 | 37.5 | n
• | | | າ ∿ | 1030 | 20.3 | | | ್ | 1320 | 20 | 2, | - 0 | _ & | | -0 | • | | .0 | | 0 G | | 305 | • | 0 | 0(| ` & | | | Z ₀ | 0 | 01V 8 % | | 1RG FLOW
1200,000 | TRG FLUW
5000,000 | 08J 0EV
931,715 | TRG FLOW
1200,000 | TRG FLOW
5000,000 | 1004,728 | |---|--|--------------------------------------|--|--|----------------------|----------------------|-------------------------------------|----------------------|----------------------|--------------------------| | | AC IPLT IPRT NSTAN
0 0 0 3 0 0 | PERFURMED
10= 1
1.50 2.20 3.25 | ZATION DIV 7 VAR 6 DIV 7 C 0.0 C CNST | TO | INT FLOW
1224,953 | INT FLOW
7762,425 | VARCH) VARCH13
.500E+04 .500E+04 | INT FLOW
1225.118 | INT FLOW
7815.023 | VARCH) VARCH1) . 495E+04 | | FLOOD CONTROL SYSTEM CUMPONENT OPTIMIZATION
SIZING RESERVOIR AND PUMPING FLANT
HYDROLOGIC PERFORMANCE CONSTRAINED | B SPECIFICATION Y IHR IMIN METRC O 0 0 R NWT LROPT TRACE 7 0 0 | NALYSES TO BE 2 NRTIO= 9 LRT | SYSTEN OPTIMIZ
VAR 5 V
0.
ANORM | FIXED COST INPUT
FCAP
0. 0.0000
0. 0. | 1STA
1050 | 15TA
305 | NC W W | 18TA
1030 | 1STA
305 | E C | | TRUL SYSTEM CUMPONENT OPT
SERVOIR AND PUMPING PLANT
C PERFORMANCE CONSTRAINED | JOH
NHR NMIN IDAY
1 0 JUPER | | VAR 3 VAR 4 | | | | | | | | | FLOOD CONTR
SIZING RESE
HYDROLOGIC | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | R110S# | VAR 1 VAR 2 5000. | | | | | | | | *5000° FLW DEV FL# 085 FLW DEV FLW 08J 931,715 FLW DEV FLK CBJ TANCST ANDMG OFTN(NC) 685,365 334,300 ,951E+06 FLW DEV 2815,023 FLW 08J TANCST ANDMG OFFN(NC) 683,630 336,115 ,103E+07 OBJECTIVE FUNCTION FOR VARIABLE 1 FLW DEV 2867,667 FL* 08J 1082,021 TRG FLUW 5000,000 INT FLOW 7867.667 1STA 305 TANCST ANDMG O FININC) 681,895 337,930 ,110E+07 .490E+04 .490E+04 1082.021 NG M ML .1104E+07 .1026E+07 FLW DEV 25,233 FLW 09J TRG FLUM 1200,000 INT FLOW 1225.233 1STA 1030 Exhibit 4 3 of 28 | | | | 15TA | INT FLOW
1214,982 | TRG FLUW
1200,000 | 000° | 7 L M DE V | |---------------------------------|----------------|-----------|------------------|-------------------------------------|----------------------|---------------------------------|--| | | | | ISTA
305 | INT FLOW
6997.027 | TRG FLUW
5000,000 | FLN 083 | FLW DEV
1997.027 | | VAR 1 ADJ FRUM | 5000,00 TO | 5826.40 | ω
Σ
Σ
2 | VAR(M) VAR(M1)
*500E+U4 .583E+04 | UBJ DEV
254,482 | TANCST ANDMG 178809 | 0 FTN(NC)
,260E+06 | | | | | 1030 | INT FLOW
1214,982 | TRG FLOW
1200,000 | 000° | × 10 € 7 € 1 € 1 € 1 € 1 € 1 € 1 € 1 € 1 € 1 | | | | | 181A
305 | INT FLUW
7061.828 | TRG FLOW
5000,000 | FLW 083
289,154 | FLW DEV
2001,828 | | | | | E O | .495E+04 .583E+04 | 083 DEY
289,154 | TANCST ANDMG
704,862 309,993 | 0 FIN(NC) | | | | | 18TA
1030 | INT FLOW | TRG FLUW
1200,000 | PLW 085 | FLW DEV
14,982 | | | | | 181A
305 | INT FLOW
7126.578 | 1RG FLUW
5000,000 | FLW UBJ
327,224 | FLW DEV | | | | | E O | VAR(M) VAR(M1) | 08J DEV
327,224 | TANCST ANDMG
701,468 311,125 | 0 FTN(NC) | | OBJECTIVE FUNCTION FOR VARIABLE | OR VARIABLE 9 | *2596E+06 | .2945E+06 | .3324E+06 | | | | | | | | 151A
1030 | INT FLOW
1214,982 | TRG FLUW
1200,000 | FLW UBJ | FLW DEV
14,982 | | | | | ISTA
305 | INT FLOW
6407,512 | 1RG FLUW
5000,000 | FLW 08J | FLW DEV | | VAR 9 ADJ FROM | 5000,00 10 | 25.855 | E T | VARCM) VARCHI)
SB3E+04 SSSE+04 | 08J DEV
46.763 | 145.858 285,003 | G FIN(NC)
492E+05 | | | | | 1STA
1030 | INT FLOW
1215,496 | TRG FLOW
1200,000 | FLM 083 | FLX DEV
15.408 | | | | | 1STA
305 | 1NT FLUX
6549+351 | TRG FLCW
5000,000 | FLW 08J | FLW DEV | | | | | NC S | VARCM) VARCM1) | 083 DEV
53.039 | TANCST ANDHG
744,354 286,520 | 0 FIN(NC) | | | | | 1STA
1030 | INT FLOW
1216.060 | TRG FLOW
1200,000 | FLW 08J | FLW DEV | | | | | 15!A | INT FLOW
6391.365 | 18G FLOW
5000,000 | FLW 08J
59,963 | FLW DEV
1391,365 | | | | | NC W WI | .571E+04 .555E+04 | 08J DEV
59,963 | TANCST ANDMG
742,870 288,041 | 0 FTN(NC) | | OBJECTIVE FUNCTION FOR VARIABLE | FOR VARIABLE 1 | .4924E+05 | ,5571E+05 | •6285E+05 | | | | | VAR 1 ABJ FRUM 5826.40 TO | | | | | | | |-----------------------------------|-----------|---|--------------------------|----------------------|---------------------------------|-----------------------| | 1 ADJ FRUM | | 181A
305 | INT FLOW
6019,769 | TRG FLUW
5000.000 | FLW UBJ
17,303 | FLM DEV
1019.769 | | | 6360 | 1 6
2 0 | .555E+04 .636E+04 | 08J DEV
17,303 | TANCST ANDMG
759,453 272,327 | 0 FIN(NC)
.189E+05 | | | | 181A | INT FLOW
1212,351 | TRG FLU#
1200,000 | FLW CRJ | FLW DEV
12,351 | | | | ISTA
305 | INT FLOW
6083,313 | TRG FLUW
5000,000 | FLW CRJ
22,036 | FLW DEV
1083,313 | | | | E O | VAR(M1) VAR(M1) .550E+04 | 08J DEV
22,036 | TANCST ANDMG
755,682 274,393 | 0 FTN(NC) | | | | 1STA
1030 | INT FLOW
1212,351 | TRG FLUM
1200,000 | FL# 085 | FLW DEV
12,351 | | | | 181A
305 | INT FLOW
6146,839 | 186 FLUW
5000,000 | FLW 08J | FLW DEV | | | | NC OR W | .544E+04 .656E+04 | 083 DEV
27,678 | TANCST ANDMG
751,912 276,459 | 0 FIN(NC) | | OBJECTIVE FUNCTION FOR VARIABLE 9 | ,1889E+05 | .2373E+05 | *2949E+05 | | | | | | | 1STA
1050 | INT FLOW
1212,351 | TRG FLOW 1200,000 | 000*
180 HTs | TEN DEV | | | | ISTA
305 | INT FLOW
5731,269 | TRG FLUM
5000,000 | FLW 08J | FLW DEV
731,269 | | VAR 9 ADJ FRUM 5553.52 TO | 5818,71 | ω
ω
ω
υ
υ
υ | VAR(M1) VAR(M1) | 083 DEV
4,576 | 777,459 262,641 | 9 FTN(NC) | | | | 15TA
1030 | INT FLUW
1212,486 | 186 FLOW
1200,000 | 000° | FLW DEV | | | | 181A
305 | INT FLOW
5756,224 | 1RG FLUW
5000,000 | FL# 08J | 756,224 | | | | N N N N N N N N N N N N N N N N N N N | *630E+04 \$582E+04 | 08J DEV
5.233 | TANCST ANDMG
775,838 264,030 | O FIN(NC) | | | | 1STA
1030 | INT FLOW
1212,670 | 186 FLOW | FLW OBJ | FLW DEV
12.670 | | | | & ± 0 € € € € € € € € € € € € € € € € € € | INT FLOW
5782,138 | TRG FLUM
5000,000 | FLW URJ
5.988 | FLW DEV
782,138 | | | | 20 X X X X X X X X X X X X X X X X X X X | .623E+04 .582E+04 | 083 DEV
5,988 | TANCST ANDMG
774,217 265,434 | 0 FTN(NC) | | | | | 184
184
1030 | 1NT FLOW
1212,494 | 1200.000 | FLW 085 | FLW DEV
12,494 | |---------------------------------|----------------|-----------|---|----------------------------------|-----------------------|---|--------------------| | | | | 151A
305 | INT FLOW
5587,516 | TRG FLOW
\$000,000 | 7 9 0 8 7 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | FLW DEV | | VAR 1 ADJ FROM | 6360,80 TQ | 6757,05 | E O | .582E+04 .676E+04 | 08J DEV
1,906 | TANCST ANDRO | T SOSE+OF | | | | | 18TA
1030 | INT FLOW
1212.494 | TRG FLOW
1200,000 | 000° | FLW DEV | | | | | 191A
305 | 1NT FLOX
5650.189 | FRG FLOW
5000,000 | FLW 08J | FLW 0EV
650,189 | | | | | E O | . \$76E+04 . 676E+04 | 08J DEV
2.860 | 783.663 256.439 | 5 0 FTN(NC) | | | | | 18TA
1050 | INT FLOW | TRG FLOW
1200,000 | 000° | FL# DEV | | | | | ISTA
305 | INT FLOW
5712.839 | TRG FLOW
5000.000 | FLW 081 | FLW DEV
712,839 | | | | | Z O | .570E+04 .676E+04 | 08J DEV | TANCST ANDMG
779.712 258.607 | D FINCHES | | OBJECTIVE FUNCTION FOR VARIABLE | FOR VARIABLE 9 | .3028E+04 | .4014E+64 | .5328£+04 | | | | | | | | 4 - 8 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | INT FLOW | TRG FLOW
1200,000 | 000° | FLW DEV
12,494 | | | | | 4 T S S S S S S S S S S S S S S S S S S | INT FLOW
5430,135 | TRG FLOW
5000,000 | F.L. 08J | FLW DEV
430.135 | | VAR 9 ADJ FROM | 5818,71 TO | 5,778 | NC P | VAR(M) VAR(M1) .676E+04 .596E+04 | 085
0 28 0 | TANCST ANDMG
797.527 249.265 | S 0 FIN(NC) | | | | | 18-18-18-18-18-18-18-18-18-18-18-18-18-1 | 1212,365 | 180 FLOW | FLW 083 | FLW DEV
12, 365 | | | | | 181A
305 | INT FLOW | TRG FLOW
5000,000 | FLW UBJ. | FLW DEV
453,915 | | | | | -0
E
E -1
U Ni
Z | .669E+04 .596E+04
 087 087 | TANCST ANDMG
795.780 250.624 | 6 O FINCNC) | | | | | 1030
1030 | 8907 | 18G FLOW
1200,000 | FLW 08J | FLW DEV | | | | | 181A
305 | INT FLOW
6477-721 | TRG FLDW
5000,000 | FL 083 | FLW DEV 477,721 | | | | | NC W | .662E+04 .596E+04 | 08J 0EV | TANCST ANDMG
794,039 251,997 | 6 G FINENC) | | OBJECTIVE FUNCTION FOR VARIABLE | FOR VARIABLE 1 | .1620E+04 | .1757E+04 | •1918E+04 | | | | | The Author Control of Control | |-------------------------------| | | | | | | | | | 13956+0 | | | | | | | | | | | | | | | | Section 1 | | | | Σ
Σ
υν | .705E+04 .503E+04 | 08J DEV | 308,501 241,846 | TILER+OR | |-----------------------------------|--|--------------|--------------------------------------|----------------------|---------------------------------|-----------------------| | | | 181A
1030 | INT FLOW
1212,424 | 1200,000 | FLW 08J | FLW DEV | | | | HOTA
NOS | INT FLOW
5294.204 | TRG FLUW
5000,000 | FL# 084 | FLW DEV
294.204 | | | | NC # M1 | VAR(M) VAR(M1) | 06J DEV | TANCST ANDMG | 0 FIN(NC) | | OBJECTIVE FUNCTION FOR VARIABLE 1 | ,1117E+04 | .11436+04 | .1176E+04 | | | | | | | 151A
1050 | INT FLOW
1214,815 | TRG FLOW
1200,000 | FLW URJ . | FLM DEV | | | | SOS | INT FLOW
5182,446 | TRG FLOW
5000,000 | FLW 083 | FLW DEV | | VAR I ADIF FROM 7116 72 TO | ************************************** | NC W WI | VARCM) VARCM1) *603E+04 .754E+04 . | | 1ANCST ANDMG 815,324 236,794 | D FIM (NC) | | | | 18TA
1030 | INT FLOW
1214,815 | 186 FLDW | FLW CBU | FLW DEV | | | | 1STA
305 | INT FLOW
5182,446 | TRG FLOW
5000,000 | FL* 09J | FLW DEV
162,446 | | | | E C | VAR(M) VAR(M1) .603E+04 .734E+04 | OBJ DEV | 1ANCST ANDME 615,324 256,794 | *107E*04 | | | | 181A
1030 | INT FLOW
1214,815 | TRG FLOW
1200,000 | 000° | FLW DEV | | | | 1STA
305 | INT FLOW
5247,090 | TRG FLUW
5000,000 | 090° | FLW DEV
247.090 | | | | NC O X | VAR(M) VAR(M1)
.597E+04 .734E+04 | UBJ DEV | 811,224 239,021 | 0 FTN(NC)
8111E+04 | | | | 1STA
1030 | INT FLUW
1214.815 | TRG FLUM
1200,000 | 000° | FLW DEV | | | | 181A
305 | INT FLOW
5311,713 | TRG FLOW
5000,000 | FLW OBL | FLW DEV
311,713 | | | | E O | VAR(M1) VAR(M1) .590E+04 .734E+04 | 08J DEV | TANCST ANDMG
807,133 241,265 | O FINCHC) | | OBJECTIVE FUNCTION FOR VARIABLE 9 | .10715+04 | .11136+04 | .1207E+04 | | | | | | | 1STA
1030 | INT FLOW | TRG FLUW
1200,000 | 000 * TH | FLW DEV
14,815 | | | | 181× | 1NT FLOX
5162,435 | TRG FLOW
5000,000 | FLK DBJ | FLW DEV
162,435 | | VAR 9 ADJ FROM KA25-26 10 | 6044.14 | NC W | VAR(M) VAR(M1)
.7548.04 .6046.404 | 06J DEV
•011 | TANCST ANDMG
816.613 236.138 | . 105E+04 | | INT FLOW TRG FLOW FLW UBJ FLW DEV 1214,415 1200,000 14,815 | INT FLOW TRG FLOW FLW UBJ FLW DEV 5162,435 5000,000 | 1) VAR(M1) GBJ DEV TANGST ANDHG G FIN(NC) 34 .604E+04 .011 816.613 236.138 .106E+04 | INT FLUH TRG FLUM FLW 06J FLW 0EV 1214.389 14.389 | 5184,776 5000,000 FLW 08J FLW DEV | 1) VAR(M1) OBJ DEV TANCST ANDHG O FIN(NC)
34 .604E+04 .019 814.895 237.413 .107E+04 | 1213.868 1200.000 13.868 | S207.377 5000,000 +LM DRJ FLW DRY | 4) VARCM13 08J DEV TANCST ANDMG 0 FTN(NC)
34 .604E+04 .030 813,176 236,682 .108E+04 | | INT FLOW TRG PLOW FLW CBJ FLW DEV 1215,736 15,736 | 5128.678 5000.000 128.678 | 04 .745E+04 .005 819.310 234.183 .106E+04 | INT FLUM 186 FLUM FLW 083 FLW DEV
1215.736 1200.500 15.736 | INT FLUW TRG FLOW FLW 09J FLW 0EY 5128.678 5000,000 .005 128.678 | M) VAR(M1) OBJ DEV TANCST ANDMG G FIN(NC) D4 .745E+04 .005 819.310 234.183 .106E+04 | INT FLOW TRG FLOW FLW ORJ FLW DEV 255:130 15.130 | 5150,515 5000,000 FLW UBJ FLW DEY | |--|---|---|---|-----------------------------------|--|--------------------------|-----------------------------------|--|---------------------------------|---|---------------------------|---|---|--|---|--|-----------------------------------| | 1030 12 | 151A 10 | M MI VAR(M) | 1974 In | 18TA IN
305 51 | M1 VAR(M) | ISTA IN | 1STA IN | M1 VAR(M) | .10838+04 | 181A 17 | 151A IN
305 5 | M1 VARCM)
1 .604£+04 | ISTA I | 181A 11: | M MI VAR(M) | 1030 | 15TA
305 | | | | NC T | | | E T | | | E-UMZ | +1072E+04 | | | N C | | +4 | N N | | 1 | | | | | | | | | | | .1065E+04 | | | 2452.02 | | | | | | | | | | | | | | | | FOR VARIABLE 1 | | | 7336,88 10 | | | | | | | | | | | | | | | | OBJECTIVE FUNCTION FOR VARIABLE | | | 1 ADJ FRUM | | | | | | | .1062E+04 | |---| | | | | | | | *************************************** | | SUB-AREA RUNUFF COMPUTATION | | Ow
IECON | | PREVIOUSLY GENERATED HYDROGRAPHS READ FROM TAPE | | 13 | | 210. | | 57.2 | | | | | | ****** | | | | | | | 11200 | | 30000° | | | - M. P. | * m |
 | | 743 | 0.70 | | . 00 | | |------------------------|-----------------------------|---|----------------|---|----------------------------------|---------------------|-----------------------------|----------------|---------|---------------------------------------|---|-------------------|------|----------|----------|-------|--------------|--| | IAUTO | | | | | 1105. | | 24199 | : - | | | | | | | 1393. 14 | | | | | ISTAGE | | LSTR | | EXPT
0.00 | 15500
1090
5550 | | 19092, | | | | | | | | | | | | | INAME
T | 1
0
>
x o | IOVR | STUHA
#1. | ELEVT
975,00 | 500.
075. | | in o | | 4 | 141 | 100 CV | 288
100
100 | | 727 | 1565 | 952 | 795 | AL VOLUME
16071:
472:
174:
1378:
1378: | | JPRI | 8 0
8
8 | 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 15% | 00.00 | =-7 | | FUNC | | • | - Nu | 536 | 319, | | 122. | 1322 | 1289 | 903. | UR 101AL 744 | | 7 Je L
0 | 1001
0 | 1001 | × 000 • 0 | RDSCNI
.0504 | 1050, | | 11320,
15711, | 2. RTIO | | 111. | 0.000
0.000
0.000 | 353.
128. | | 720. | 267. | 519. | 813. | 72*HUUR
8 8
8 14
1700 | | TAPE
O | I SAME | LAN Z
ING DATA
ISAME | AMSKK
0.000 | RESERVOIR DATA
DW RANCST | 6800.
1045.
3600. | | 310RAGE
7528.
1732. | 110, PLAN | OUTFLOW | | | | STOR | . | | • | 016.
823. | 24 HOUR
1103 128 1 | | IECON | PLAN
ROUTING
IRES ISA | PLAN
ROUTING
IRES ISA | LAG | RESER
COOM
00.00 | 5200.
1030.
3000. | 752ª | 97NTHETIC
4173.
1299, | | | | | | | | | | - | 582.
16*
16*
3.92.
3.92.
3.92.
3.92. | | OIR
ICUMP | 9 0 0 ° 0 | 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | NSTDL | 7 × × × × × × × × × × × × × × × × × × × | 1015. | AGE OF | \$
2053.
866. | STATION | | • • • • • • • • • • • • • • • • • • • | 2 to 0 | 432.
156. | | 719 | 1130 | 1370 | 1049
835 | PEAK
588.
17. | | RESERVOIR
ISTAG ICU | 000000 | 000°0 | NSTPS
1 | ELEVL
975.00 | | AT STORAGE | | | | 9 4 | 5.80 | 173. | | 719. | 1059 | 1389. | 1083. | | | PROPOSED | 0.0 | 0°0
8\$01b | | CO9, 00 9 | 1500. | 1049,96 | 1049 | | | , e | 360
585 | 191. | | 719. | 992 | 405. | 862. | CFS
CMS
INCHES
INCHES
ACTIT | | | | | | CAPMN
0, 20 | * 6 9 6 | ATION IS | 714. | | | | | | | | | | | | | | | | | 0.000 C | CAPACITY#
ELEVATION#
CUST# | LET CREST ELEVATION | STORAGES | | | Š | 0 x x x x x x x x x x x x x x x x x x x | 577 | | 719 | 930. | 1409. | 1152. | | MAXIMUM STORAGE = | | | | RESERVOI
7526 | c | CAP COST
3848. | TOT ANN S | | | | | | |---|---|--|--|-----------------------------------|--|---|---
---|---|--|--| | 1006
14750
14752
1631 | 106.
675.
1659.
2819.
1615. | 1068
4684
11985
2310 | 106.
858.
8907.
10633.
1886. | 123 | ð | 11344
20574
30653
17065
1554 | 182.
1013.
6957.
1693. | 10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000 | 1182.
10747.
1927.
1562. | | | | 796.
1413.
1540.
11550.
6747. | 796.
1610.
6955.
17205.
7872. | 1996-
1818-
10773-
7711-
6507- | 798.
2034.
9799.
10346.
7577.
6388. | 80876
9997
7488 | | 618.
2501.
11657.
9553.
7545. | 855.
2774.
12133.
7220. | 938.
123111.
12316.
7107.
5917. | 36010
36010
386010
88400
58010 | | ************************************** | | | TNCHES ACTT | | PEAK
69524
69524
1500
1000
1000
1000
1000
1000 | | 24-HUUR
876-8-
876-8-
836-89-
17400- | 72-HOUR
4122.
117.
10.92
277.47
20450.
25225. | TATO. | 247316.
7003.
10.92.
277.47
20450.
25225. | | | | | | | | | AQ.
Y | ************************************** | | 4
4
4
4
4
4
4
4 | | | ************************************** | | | | PUTENTIAL I | IAL CHAN
187A0
1030
CLUSS | STAG ICOMP IECON. 1030 1 1 1 ALL PLAN LOSS AVG IRES *000 0.00 1 | ICATION IECON ALL PLAN ROUT IRES | ION REACH 1 0 1 PLANS HAVE SI ROUTING DATA 1.5 | JPLT
JPLT
SAME
A IOPT | LPRT
C
C
C
C
C
C
C | H NAME
IDVR | 18
A A B B B B B B B B B B B B B B B B B B | 1AUTO
0 | | | 00 | 2 2 3 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | NSTPS
0. | NSTDL
0
475. | LAG
0
940. | ANSKK
0.000
2135 | × 00.00
3080
10250
10250 | 0,000
6300, | 810x | | | | | L FLUGD DANAGE CUMPUTATION TRGT DGPRT IAGST ADSCNT AANCST 1200. 1.000 0.00000 0.00000 | | | | | | | 1000 100 100 100 100 100 100 100 100 10 | | | | 000.6 | | 27 • 860 · · · · · · · · · · · · · · · · · · · | | | , i | > | | | | | | | | 7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | | <i>-</i> | | | | | | | | | | | |---|-------------|------|----|---|-----|-----|---|-----|-----|------|-------|---------|--|--------------|---------|------|-------------|-------|---------------------------------|-------|------|------|---------|-----|---|-----------------|----------|-----------|------------|------------|-------------|-----|---------------------------------------|--------|---|------|-------------| | CTED ANNUAL
ISAME | | 0000 | ٠. | • | 000 | 000 | 90.00 | 000 | 000 | 000 | 000 | 500 . 2 | 000 | THIS DAT | | | TYPE | 000 | 1.73 | 2,02 | 82.5 | . ac | 0.00 | 72. | 10,02 | | C 7071 | 00.0 | 00.0 | 00.0 | 00.0 | 77. | 3 | 4 | | - | | | E X P | Z | | _ | | | | | | - |
 | : === | 0 7 | 1,500 15. | DAMAGES FOR | PLAN 1 | | TYPE | 00.0 | 0.7 | .31 | . 53 | | .0. | .02 | 1.59 | D. AN | 1 UO > 1 | | 00.0 | 00.0 | 000 | 3 P | 90 | \$ 0 ° | • | .05 | N N | | STA NFLUD | 1030 | | | | | | | | | | | | | ANNUAL | ON 1030 | | SUR | 000 | - 3
- 5
- 5
- 5
- 7 | 6.65 | 7.73 | 5.54 | 0.4 | 99 | 33.58 | IN 1050 | 1 | 6000 | 00.0 | 00.0 | 00.0 | | 1016 | 06 | | • 54 | #5.
#.54 | | N - | STATIC | | | | | | | | | | | | 50.100 | AVERAGE | STATI | PROB | INT | 286 | 1.752 | 1.072 | 785 | 365 | 037 | 010 | DMG | ∵ 02 | 908d | | - | | - | | | | | | _ | | | IC DATA FOR | | | | | | | | | | | 7 | 020 15130 | DJUSTMENT OF | , L | EXCD | FRED | 000.9 | 500
200
200
200
200 | 1.769 | 867 | .323 | 2601610 | | AVG ANN | OUD DAMAGES FOR | EXCO | FLOW FRED | 504.00.000 | 847. 3.097 | 1008. 1.709 | 257 |
* * * * * * * * * * * * * * * * * * * | 9277 | • | 506. | 206 | 教教会在女女女女教教 | 1AUT0
0 | 5 72 72 75 75 75 75 75 75 75 75 75 75 75 75 75 | · · · · · · · · · · · · · · · · · · · | ZAUTO
0 | | | . | | | | | | |------------|---|---|--|----------------------------------|---|---------------------------------|------------|---|------------------|--------------|--| | 13 A LE 17 | 4.4.8
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virgin | ## ##
##
##
##
| ISTAGE TA | -4
-2
-2
-2
-3
-4 | | • • | | | | | | | 0 0 | 7 APE 300.00.00.00.00.00.00.00.00.00.00.00.00. | · · · · · · · · · · · · · · · · · · · | TO O | P IDVR | STORA | 6300.
24000. | | 101AL VOLUME
17369-
492-
19-19-
1436- | | | TOTAL VOLUME
20842,
590,
23,38
1723,
2126, | | | PHS READ FROM 1 21. 228. 260. 275. 1150. 151. 151. 151. 151. 151. 151. 1 | ** | NG
JPLT JPRT | SAME
A IUPT IPMP
0 0 | XX T X 00000000000000000000000000000000 | 5080.
10250. | 1, RTIO 1 | 72-HUUR 7
269.
88.
19.49.
1456.
172. | 434. | 1, RTIO 2 | 72°HOUR 7
347°
10°
23°38
23°38
23°38
2123° | | ~ | AYDROGRA | **** | HYDROGRAPH ROUTING
YPASS REACH
IECON ITAPE J | ANS HAVE | 40 | | 2050, PLAN | 24.HQUR
613.
17.
16.55
18.55
18.51
18.17. | # 350 4 % | 2030, PLAN 1 | 24-HDUR
733.
733.
21.
19.73
1454. | | c | 11.Y GENERATED P
8. 12
20. 210
1340, 1341
1341, 244
1541, 1541
1541, 1541
1541, 1541 | | HYDROC
AND/OR BYPASS
ICOMP IECON
1 1 | ALL PLARING AVG IRES | 100 | 2050. | 4 | 6 HUUR
907
26 - 26
6 - 10
555 - 355 | MAXIMUM STORAGE | STATION | 6=HUUR
1091:
31:
31:
7:34
7:34
541: | | 2 | PRF V10USLY 7. 20. 190. 1370. 1385. 1365. 30. 8 | *************************************** | POTENTIAL LEVEE AN
ISTAN IC
2030 | 0 000000 | NSTPS
1 | 1020 | | 9 9 8 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | PEAK
1139.
32. | | | 11786
4450
4600
100 | | POTENTI | 0°0
0°0 | | | | CFS
CMS
INCHES
ACET
THOUS CU M | | | INCHES INCHES ATTHOUS OU THOUS | | | ************************************** | **** | | | | • 0
• 0
• 1
• 0
• 0 | | | | | | | | | 1 S 1 S 4 S 5 S 5 S 5 S 5 S 5 S 5 S 5 S 5 S 5 | NFLUD
16 | EXPECTED NOWG IS | ISAME |
11.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00 | 0.000
0.000 | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ADSCNT
0.00000 | AANCST
0.00000 | 11.98 | |--|---|---|---------------|--|-----------|---|--|---|-------------------|-------------------|----------| | \sim | ATA FUR | STATION 2 | 030 PLAN | -
z | | | | | | | | | # XF.G | 1030 | | 000.0 | | | | | | | | | | 5,500 | 1130 | | 000.0 | | | | | | | | | | 4 .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1740 | ru | 007.8 | | | | | | | | | | 2,500 | 2280. | | 5,000 | | | | | | | | | | 1,500 | 3200 | | 000 | | | | | | | | | | 400 | 2 C C C C C C C C C C C C C C C C C C C | | 11.800 | | | | | | | | | | 005 | . O. S. | | 13,900 | | | | | | | | | | e in | 6480 | | 16.400 | | | | | | | | | | e c | 7540 | | 200 | | | | | | | | | | | 10000 | | 28.00C | | | | | | | | | | 0.50 | 12100. | | 34,500 | | | | | | | | | | င့် င ့်
လူ ဝင်
လူ ဝ | 21000. | | 50.100 | | | | | | | | | | NO ADJUSTH | MENT OF | AVERAGE ANN | ANNUAL DAMAGE | S FOR | THIS DATA | | | | | | | | FLOOD DAMAGE | | STATION | 2030 PLAN | N N | | •, -: | | | | | | | 4 | | | | | | | | | | | | | 3 -
1 -
2 -
2 - | | G | | 00.0 | | | | | | | | | 1139 | | , | × 6 | . 98 | | | | | | | | | 1940 | | yn. | . 81 | 5,81 | | | | | | | | | 2921 | | v r | 60, | 0.65 | | | | | | | | | 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | - • | 1 27 | - 50 | | | | | | | | | 10101 | | | 7.0 | 3.70 | | | | | | | | | | | -
- | 05. | 1.50 | | | | | | | | | 60002 | | | | 66 | | | | | | | | | | AVG ANN | PT . | 3.5A | 33,58 | | | | | | | | | FLOOD DAMA | . B
B | FOR STATION & | 2030 PL | PLAN 2 | | | | | | | | | | X
I | | | | | | | | | | | | 30.0 | EE - | | | 1 3 4 4 | | | | | | | | | 1139 | , N | | | 80
60
80
80
80
80
80
80
80
80
80
80
80
80
80 | | | | | | | | | 1940. | 3.0 | | 5.81 | 5.81 | | | | | | | | | 292 | | | 400 | 2,73 | | | | | | | | | 6699 | | | 25.0 | 6.54 | | | | | | | | | 10101 | • | | 3.70 | 3.70 | | | | | | | | | 8 15177. | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 1.50 | | | | | | | | | | 20002 | 000 | | 00 | | | | | | | | | | | AVG ANN | DMG 3. | 3,58 | 33,58 | | | | | | | | | | A CG ANN | RFT | 00. | 00.0 | * | ***** | * | **** | | *** | ************************************** | * | *** | | 化化化化化化化化 | | | | ************************************** | | | | | | | | | | | 4 | | |-------------|--| | 0 | | | - | | | CUMPUTATION | | | 4 | | | _ | | | - | | | ~ | | | 뜨 | | | <u>~</u> | | | \sim | | | u | | | | | | RUNOFF | | | 4 | | | ⋾ | | | 7 | | | = | | | ≂ | | | | | | 12 | | | • | | | ¥ | | | x | | | ⋖ | | | MAKEA | | | 308 | | | 5 | | | = | | | | 250 | 200 | | ะกั |----------
---|--|--|--|---|--|--|--|--|---|--|---|--|--
---|---|--|--|--|--|--|---|--|--| | | 160. | 278. | . O. | | | | AGE TAUTO | 31. | 333. | φ.
Θ. α | ก๋ณ๋ | | | | | VOLUME | 1147. | 00°0° | 43551. | | | VOLUME | 1377 | 7 C C | 4021 | | | VOLUME
81034. | 2295 | 39,79 | 6700. | | FROM TAP | 86. | 383. | 0 9 | • •
n • • | ** | | 1881
0 | RT10 1 | TUTAL | | | | | RT10 2 | TOTAL | | | | | R110 3 | TOYAL | | | | | XE AD | 7. | 23. | * 10 | ••• | | S.H. | JPLT | PLAN 1 | 72-H0UR | 6. | 10.01 | 3351. | | PLAN | 72-HUUR |

 | 27 0° 5 C | 4021 | | | 72-HUUR
1351. | . e. | 39.79 | 6700. | | 1, KATIO | | - M | 83. | - M | ************************************** | HYDROGRAP | T TAPE | _
 | 24-HOUR | | 99,44 | 3508° | | 30 | 24-H0UR | - to 7 | 97,00 | \$400 | | | ~ | - (
- () | 33,60 | 5658.
6980. | | ž
Ž | | 7 | | , m | | COMBINE | REBAY POO
IECON | ≪ ∽ | 6-HUUR | 9 | 2 2 | 1060. | | < 1 | 6-H0UR | 73. | 7.57 | 1275 | | | 6*HUUR
4375. | 154. | 12,89 | 2171. | | /100sr | | 7 | | • | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | 0F 3 | PEAK
10-0 | 63, | | | | 0F 3 | PEAK | . 46. | | | | • i
5 | PEAK
4563. | 129. | | | | | | | | | * | | MBINED IN | SUK | Д.
С. | S NO | NCHE S | AC-FT
THOUS CU M | | ¥0° | i
t | | O E | THUIS CILE | | t on | S H D | SEUCES | カモンとす | THOUS CU M | | | TALL TOURS OF THE CONTRACT | FACATORSET GENERALIED TIPOLOGRAPHS FROM TAPE 2. 3. 4.4 TIU 1. 43. 64. 66. 70. 88. 108. | PLAN 1, KATIO 1 A 16. 31. 43. 24. 46. 70. 88. 100. 160. 413. 423. 383. 383. 276. | FACATOUSE, GENERAL CONTROL AND FRUM FAFE. 2. 3. 4. 4. 4. 10. 7. 68. 108. 160. 453. 453. 453. 453. 383. 276. 129. 80. 80. 80. 80. 80. 80. 80. 80. 80. 80 | Fig. 100. 1. FAIL 1. 10. 31. 64. 65. 70. 453. 483. 483. 50. 33. 483. 64. 50. 39. 10. 10. 88. 70. 88. 50. 39. 50. 50. 50. 50. 50. 50. 50. 50. 50. 50 | FACTORING PLAN 1, KATIO 1 7, 16, 31, 43, 65, 413, 450, 453, 460, 453, 460, 453, 460, 453, 460, 453, 460, 453, 460, 50, 453, 460, 463, 460, 50, 460, 50, 460, 50, 50, 50, 50, 50, 50, 50, 50, 50, 5 | FACY LOUGHT FOR THE PLAN 1, KATIO 1 7. 16. 31. 43. 43. 64. 65. 45. 453. 423. 383. 108. 108. 109. 85. 423. 583. 59. 30. 413. 450. 453. 423. 583. 59. 30. 57. 64. 50. 59. 59. 30. 40. 55. 59. 59. 59. 59. 59. 59. 59. 59. 59 | 2. 3. 44. 10. 17. 10. 31. 43. 64. 65. 43. 443. 70. 10. 31. 443. 64. 65. 70. 453. 423. 383. 373. 279. 100. 100. 160. 160. 100. 453. 423. 383. 373. 279. 100. 100. 83. 64. 50. 59. 50. 59. 40. 50. 50. 50. 50. 50. 50. 50. 50. 50. 5 | 2. 3. PLAN 1.KATIU 1 7. 16. 31. 43. 160. 160. 160. 160. 160. 160. 160. 160 | ### PLAN 1, MATIO 1 7. 16. 31. 43. 64. 56. 70. 70. 160. 160. 413. 450. 453. 423. 383. 333. 278. 10. 453. 423. 383. 333. 278. 10. 64. 50. 50. 50. 40. 10. 8. 7. 64. 50. 50. 40. 10. 8. 7. 64. 50. 50. 50. 40. 10. 8. 7. 64. 50. 50. 50. 40. 10. 8. 7. 64. 50. 50. 50. 40. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. | 2. 3. PLAN 1, KATIU 1 7. 16. 31. 43. 64. 66. 70. 453. 423. 383. 100. 160. 10. 413. 450. 453. 423. 383. 133. 278. 10. 64. 50. 50. 50. 40. 10. 6. 5. 50. 50. 40. 10. 6. 5. 5. 5. 5. 5. 5. 5. 5. 5. 10. 6. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. | 2. 3. PLAN 1.KATIU 1 7. 16. 31. 43. 64. 66. 70. 70. 70. 160. 160. 160. 160. 160. 160. 160. 16 | TEVILOGEL GENERALED TRUTH INFER INFE | SUM OF 3 HYDROGRAPHS STATE | ### 1900
1900 | ### PLAN I KATIU 1 7 16 16 16 16 16 16 16 16 16 16 16 16 16 | ### ################################## | ###################################### | ### ################################## | ************************************** | Sum of 3 Hydrographs 1000. | *************** ************** ****** | ### ################################## | STATES AND THE PARTY OF PAR | | The color of | | PROPOSE | D PUMPI | PROPOSED PUMPING PLANT | SITE | | | | | | | | | |--|-------------------|---------------|------------------|------------------------|------------|---------------------|-------------|---------------------------------------|--------|------|------------|-------|-----| | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 | | | 305 | - | | | 0 | | | | IAUTO
0 | | | | 0. 400. 100000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | | 0°0
9FQ88 | 000°0
\$\$070 | A V.G. | RO
IRES | PLAN 1
UTING DAT | | 0. C
E
0. | IOVR | LSTR | | | | | 0. 400. 1200. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | | | NSTP8 | NSTOL | LAG | | × 000°0 | TSK
0,000 | STORA | | | | | | 14. 14. 14. 15. 225. PLAN 1, RTIG 1 150. 1877 225. 262. 298. 335. 374. 421. 150. 180. 1200. 12 | | | • | .000 | 00 | 0 0 | | •• | 00 | • • | 00 | | င်င | | 14. 14. 14. 15. 225. 262. 335. 335. 374. 421. 150. 120 | | | | STATI | N
O | 305, PLA | N 1 S RTI | 1 0 | | | | | • | |
140. 144. 144. 155. 17. 222. 33, 421. 150. 1200. 1220. 125. 140. 140. 120. 120. 122 | | | | | | OUTFLOW | | | | | | | | | 755, 127, 127, 1200, 120 | * 3
* 3
* * | - 14. | 77 | 3 € |
 | 15, | 17 | ر
ر
ر | 33, | 53, | | 61. | | | 1200, | 597 | 7.55 | * / O X | V 70 | | * C | # con | 33.00 | 374 | 127 | | #26# | | | 1200 | 1200 | 1200 | 1200 | 1200 | | • • • | 000 | 000 | 1000 | 000 | | 1,200 | | | 546. 437. 350. 280. 225. 181. 147. 119. STOR 50. 62. 75. 875. 877. 112. 125. 140. 245. 299. 112. 125. 140. 245. 299. 126. 125. 140. 245. 499. 126. 126. 165. 165. 165. 165. 867. 811. 1030. 1030. 1036. 1032. 1017. 867. 146. 117. 439. 356. 439. 400. CMS 1200. 1200. 1200. 670. 1139. 1139. INCHES 34. 14.14 14.14 15. 19.75 THOUS CU M 734. 2937. 4103. 4103. | 1200 | 1200. | 1200 | 1200 | • | .00 | 000 | 1200 | 000 | 9000 | | | | | 5. 5. 5. 11. 18. 245. 262. 75. 87. 99. 112. 125. 140. 245. 299. 359. 425. 499. 581. 665. 746. 939. 1011. 1030. 1032. 1017. 992. 939. 1011. 1030. 1032. 1017. 992. 867. 811. 749. 931. 72. 100. 650. 439. 356. 182. 146. 117. 93. 72. 49. 103. 1139. 1133. | 685. | 546. | 437. | 350 | | .089 | . 525 | 181 | 147. | 119 | | 200 | | | 5. 5. 5. 6. 7. 118. 18. 50. 62. 75. 87. 99. 112. 125. 140. 62. 75. 87. 99. 112. 125. 140. 625. 629. 359. 425. 499. 581. 665. 746. 939. 1011. 1030. 1036. 1032. 1017. 992. 867. 811. 749. 681. 749. 681. 749. 685. 439. 356. 439. 356. 449. 600. 1200. | | | | | | STUR | | | | | | | | | 245. 62. 75. 87. 99. 112. 125. 140. 655. 939. 655. 939. 655. 939. 655. 939. 939. 939. 939. 939. 939. 939. 9 | เก๋ | ທ ີ່ 1 | 5. | ŝ | | ,
, | ç | 7. | = | 8 | | 27 | | | CFS 1200, 1030, 1035, 1032, 1017, 992, 953, 665, 746, 1030, 1032, 1017, 992, 1017, 992, 1017, 992, 1017, 992, 1017, 992, 1017, 992, 1017, 992, 1017, 992, 1017, 992, 1025, 1017, 992, 1025, 1000, 117, 93, 1000,
1000, 1 | × × × | •
• | 29 | 75. | | 87. | * 00 | 112. | 125 | 140 | | 164. | | | ## 1036 | · · | | 6.0 | 359 | | 52. | 000 | 581. | 665. | 746. | | 821 | | | 182, 117, 001, 75, 439, 356, 439, 400, 182, 117, 001, 75, 60, 40, 40, 40, 40, 40, 40, 40, 40, 40, 4 | | 20.74 | | 101 | - | .050 | 1036. | 1032 | 1017 | 992 | | 958 | | | PEAK 6-HOUR 24-HOUR 72-HOUR TOTAL VOLUME
1200. 1200. 570. 190. 1139. 139. 1439. 14. 14. 14. 14. 178 19.75
3.54 14.14 14.14 19.75 19.75
5.54 2381. 3326. 3326. 4103. | 228. | 182 | 146. | 117 | | 93. | 75. | , , , , , , , , , , , , , , , , , , , | 430° | 356 | | 38.5 | | | 34, 34, 34, 19, 34, 34, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35 | | į | • | | HOUR | 24-HOUR | | | VOLUME | | | | | | 3.54 14,14 19,75 595. 2381, 3326, 734, 2937, 4103. | | ž | | 3.00 | 34. | 34. | | • | 1139. | | | | | | 595, 2381, 3326, 734, 2937, 4103, | | ž
V | n - | | 3 T | . 56
. 44 | <u>.</u> | 20 H | 7.0 | | | | | | | | THOUS CU N | | | 595 | 2381 | 5386
410 | | 3326 | XAX | STOR MI | A CA | 4504 | | | | | | | | | | 66 | | 30 |----------------------------------|----------------|---|---|--------------------|-----------|---------|--------|---|-------|--------------------------------------|---|------------|-------|--------------|------------|-------------------|---------|-----|--------|--------|-----|-----|---------|-------------|-------|-------|---------------|--| | | | • | | • • • | | | 40 0 | 000 | 0.0 | 0 00
0 00
0 00
0 00
0 00 | | °02 | 128. | 521 | 900 | • 56
• 6 | | • | •
• | • • | | • | | | | | | | | 3 TR | | • • | | 10000. | | | 23.5 | * 00° | 1200 | 311. | | *** | 108, | 487 | 25.0 | 104 | | • | • < | • • | ō | | | | | | | | | IDVR L | STORA -1. | •• | | 00.
60. | | | 20 C | 1200 | 1200 | 339. | | 6 | . 04 | .001
.000 | 277. | 113. | | • | • | • | • | • | > * | 1086. | 74 | 18,83 | 3912 | | | Q O X | 13K | | ST PDSCNT | 780 | | | 0.00 | 1200. | 1200. | 360 | | • ' | 83. | 412. | | 123. | | • | • | • • | • • | • | R TUTAL | • | • 4 | m | | | | 1081 | ×000°0 | 00 | ANT DATA
RCST PANCS1
10002300 | 00009 | v 2, RTIO | | 10. | 1110. | 1200. | 1019. | | Š | 73. | 572. | 400 | 134. | | •0 | • | •
• | • | | 72-HUUR | | | | | | | ROUTING DATA
RES ISAME
1 0 | AMSKK
0.000 | 00 | PUMPING PLANT C
PMPON PHRCST
1500, 100. | 2300 | 305, FLAN | DUTFLOW | | , or c | 200 | 132. | | STUR
5. | 63. | 528. | 277 | 146. | PUMPING | •0 | • | | ••• | | Z4-HOUR | 1151 | | 13,56 | | | | i i i | LAG | • • • | PMPMN PU | 1000. | A110N | | •
• | ້ຳ | 0. | | | | | | • | | | • 0 | • | • | • • | • | 6-HOUR | • 000 X | • • • | 3,54 | . 595
7.54 | | | S A V G | S NSTDL | 1200. | УМРМХ
00000 | 50001 | 31 | | | ec | 27 | | | | | | | 74. | | | | • | • • | | PEA | 1200. | | | | | | 000°0 0° | NSTPS | 1200. | | 250. | | | | | • | 1200 | | | | nu . | | | | | | | | | | Ω.
α. α. | E LUZ | Σ | AC*F - | | | 0°0
88070 | | | | •
•
• | | | | - 10 00 P | 1200. | 1200 | • | ď | 70. | 194. | 572 | 100 | | •0 | | oʻ. | • • | ٥ | | | | | 0001 | | | | | STORAGE | | CAPACITY#
CUST# | | | | 83. | 1200. | 1200. | | | n of: | 3 | ₹ 6 | 1 0
1 0
1 N | | | • | | • c | • • | | | | | | | VPMP#1991223. | 246. 246.
11196. 1200.
1200. 1200. | | | | | | | | | |--|------------|----------|------------|------------|---------------|---------------|---------|------| | | | | CUTFLOW | | | | | | | | . 247. | £50° | . 652 | 200 | 338 | | 654 | • | | | | | 1200 | 1200 | - | 1,200 | 1500 | - | | - | | | | 1500 | | .0021 | 1200 | | | | | | _ | 1200 | | 1200 | 1200 | - | | - | - | 1200. | - | 1200. | 1200 | 1200 | 1200. | 120 | | 1200. 1200 | | 1200. | 1800 | 1200 | 7 | 1200. | 1200. | | | | | | 51UR | | | | | | | | | 85. | 86. | • 176 | | 153. | 81.8 | 3(| | 399. 519. | | 20 | 1091. | 1361, | | 1557. | 6751 | | | | 4299 | . | 7640. | 9769. | | 14596. | 17079. | 61 | | ru | 1.0 | | 28435 | 29542 | 30432. | 31129. | 31052. | 3201 | | | | 32277. | 32129 | 31922. |
31668. | 31377. | 31050 | 3071 | | 30348, 29971 | | 29185. | 28779. | 28365 | 27944. | 27518. | 27086. | 565 | | | | | PUMPING | ING | | | | | | | | | | •
• | • 0 | • | •0 | | | •0 | | | • • | • | | * 57709 | * 55044 | ò | | | | | 709 | · 5044 | | * 7709 | * 7709 | ō | | | | | | * 7709 | | * 7709 | . 6044 | 909 | | | | | | . 4004 | | . 4409 | . 4404 | ç | | 6044. 6044. | . 6044. | 6044. | | • pp 0.9 | | 6044. | * 7709 | 709 | | | | | 6-HOUR 24# | 24*HOUR 72 | 72-HUUR TOTAL | VOLUME | | | | | | 1200. | | | | | | | | | OX. | | | | 30. | 1809. | | | | | INCHES | | 1.4 | | 1.23 | 1,23 | | | | | ΣΣ | | 3,54 | | 51.37 | 31,37 | | | | | AC-FT | | | | 5282 | 5282 | | | | DOHL | THOUS CU M | | | 2937, | 6516. | 6516. | | | | | E 7. | | | | • | | | | | II
PR | | | | | | 9 | |----------------------------------|--|---|--|---|---|---| | AANCST
0.00000 | | | | | | | | ADSCNT
0.00000 | | | | | | REGULATED FLOW/STOR | | COMPUTATION
IAGST 0 | | | | | | REGULA | | DAMAGE
DGPRT
.050 | | | | | | 2000 | | FL000
TRGT
000. | | | | | | TOR = 500 | | EXPECTED ANNUAL NDMG ISAME 2 1 5 | TYPE 2.10.00.10.50.00.00.00.00.00.00.00.00.00.00.00.00 | 202500
3900000
3900000
5540000
585000 | ↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑ | 01 04 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 7 | , <u>, , , , , , , , , , , , , , , , , , </u> | | | | c c | | 231,55
301,95
223,55
105,13
75,28 | PLAN Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | 879.04
.050 TARG | | 4 IO | * | | | 232.61
232.61
110.98
110.21 | 00 00 00 00 00 00 00 00 00 00 00 00 00 | M B | | 191 | STATIO | 24400000000000000000000000000000000000 | 0000
1507
1007
1507
1507
1507
1507 | | PRUB
PRUB
1NT
0.000
1152
1150
1150
1150
013
0037
0013 | AVG ANN BFT 915. EXCEEDENCE FREGUENCY | | | DATA FUR
STUR
1500.
2300.
4000. | | 1 | | AMAGES FOR EXCO BS - 7000 0 88 - 7000 0 88 - 7000 0 88 - 7000 0 88 - 7000 0 88 - 7000 0 88 - 7000 0 9 | AVG ANN E | | | | 00000000000000000000000000000000000000 | | 15676
24937
38699
53876 | PLOOD DAMA
NO. STUR
2 898.
3 1628.
4 1672.
5 1775.
6 3071.
7 7774.
8 19064. | ₹ ₩ | PEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR MULTIPLE PLANGRATIO ECONOMIC COMPUTATIONS FLOW IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND) AREA IN SQUARE MILES (SQUARE KILOMETERS) | OPERATION | STATION | A R. E. A | 2
4
1 | RATIO 1 | RATTO 2 | RATIUS APPRATIUS APPRATIUS S | PLIED TO FI
KATIO 4 | LU#S
RATIO S | KATIO 5
1.50 | RATIO 7 | A TION | RATIO 4 | |---------------|-----------------|------------------|-------------|--------------------------------------|--------------------------------------|--------------------------------------|--|---|---|--|--|---| | HYDROGRAPH AT | | 35,10 | - ~ | 1343,
30,02)(
1343,
38,02)(| 1611,
45,62)(
1611,
45,52)(| 2685.
76.03)(
2685.
76.03)C | 3759.
106,44)(
3759.
106,44)(| 5370,
152,06)(
5370,
152,06)(| 8085,
8055,
8055,
228,09) | 354,54)
31814,
31814, | 17453
494.20)
17453
694.20) | 659.07)
659.07) | | ACUTED TO | | 35.10
90.91) | _ ~ ~ ~ | 1343.
38,02)(
588, | 1611.
45.62)(
663.
18.78)(| 76.03)
76.03)
86.03) | 3759.
106,443(
1086.
30,743(| 5370.
152.06)(
1329.
37,63)(| 8055,
228,09)(
1522,
45,93)(| 11814.
334.54)(
5264.
149.06)(| 17453.
94.20)
11126. | N G N G | | ROUTED TO | 70 T | 35.10
90.91) | _ ~ ~ ~ | 941.
26.65)(
526.
14.90)(| 1139.
12,74).
15,84). | 1940.
54,94)(
847.
83,99)(| 2921.
82,713(
1008.
28,54)(| #312,
122,10)(
1257,
35,58)(| 6699,
189,70)(
1548,
43,83)(| 288.58)
4177. | 5177 | 2060
583.4
1450 | | HYDHOGRAPH AT | ů
N | 35.10
90.91) | - ~ | 1343.
38.02)(
1343.
38.02)(| 1611.
45,62)(
1611.
45,62)(| 2665.
76,03)(
2685.
76,03)(| 3759.
106,44)(
3759.
106,44)(| 5370.
152,06)(
5370.
152,06)(| 8055,
228.09)(
8055,
228.09) | 334.54)
11014.
334.54) | 17453,
494,2010
17453,
494,2010 | | | ROUTED TO | 2030 | 35.10
90.91) | - ~ | 941.
26.85)(
26.65)(| 1139.
32,24)(
1139.
32,24)(| 1940.
54.94)(
1940.
54.94)(| 2921.
82,71)(
2921.
82,71)(| 4312.
122.10)(
4312.
122.10)(| 189,703 (
6699,
189,703 (| 288,58)(
10191,
288,58)(| 15177 | 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | HYBROGRAPH AT | ŝ | 10.00 | _ ~ | 453.
12.81)C
12.81)C | 543,
15,38)(
543,
15,38)(| 905.
25.63)(
25.63)(| 1267,
35,88)(
35,88)(| 1810.
51.25)(
51.25) | 2715.
76.86)(
2715.
76.86)(| 4843 | 5883.
166.57)(
5883. | 7.00 | | 3 COMBINED |)
0 E | 80.20
207.72) | - ~ | 2219.
62.84)(
1664.
47.12)(| 2676.
75.79)(
1968.
55.74)(| 129.21) (
3201.
90.64) (| 6859.
194.23)(
4613.
130.61)(| 10154,
287,53) (
6620,
187,46) (| 15693.
444.39);
9953.
281.84)(| 672,473
147,473
147,683
418,193 | 35345
1300-86)
705-05) | 1359,533
37599, | | ROUTED TO | 305 | 80,20
207,72) | - ~ . | | 1200.
53.98)(
1200.
53.98)(| 1200,
33,98)(
1200,
33,98)(| 33,98)
33,98)
33,98) | | 1200.
33.983(
1200.
33.983(| 1200.
33.98)(
1200.
33.98)(| 1200;
13,96)(
33,96)(| 1200.
33.98)
33.98) | | | | | - ~ | 1036.
278.)(
608. | 1835
1835
1985
1985 | 3587
4424.)(
1628.
2008.)(| 7263.16
1672.
2062.16 | 11784.)(
1775.
2189.)(| 15876.
19583.)(
3021.
3727.)(| 24937.
30760.)(
7774.
9589.)(| 38699.
47734.)(
19064.
25515.)(| 53876.
66455.1
32355. | | 4 1 VAR 2 VAR | SYST! | Σ | OPTIMIZATION RESULTS
VAR 5 VAR 6
0. 0. | RESULTS
VAR 6
0, | 010 7 | DIV 8 | PMP 9 PMP 10 | |-----------------------------------|-----------------------------------|------------------------------------|--|---|------------------|----------------|----------------| | | SYSTE
(UNITS SAME | SYSTEM COST AND
SAME AS INPUT * | M COST AND PERFORMANCE SUMMARY
AS INPUT - NORMALLY 1000'S UF DOLLARS) | PERFURMANCE SUMMARY
NORMALLY 1000'S UF | ARY
UF DOLLAR | | | | DTAL SYSTEM CAPITAL COST | * | * | * | * | 9889. | | | | TAL SYSTEM AMORTIZED | AMBRIZED CAPITAL COST | * | * * * | | *867 | | | | TAL SYSTEM ANNUAL D. | ANNUAL U.M. POWER AND REPLACEMENT | D REPLACE | MENT COST | | 323. | | | | OTAL SYSTEM ANNUAL CO | COST * * * | * | * * * | #**
* | | 821. | | | | | | | | | | | | FRAGE ANNUAL DAMAGES | S EXISTI | EXISTING CUNDITIONS | TIONS * * | | 1117. | | | | VERAGE ANNUAL DAMAGES OPTIMIZED | S OPTIMI | ZED SYSTEM | * * | | 233. | | | | VERAGE ANNUAL DAMAGE | REDUCTION (BENEFITS) | (BENEFIT | * * * (8 | * | | 944. | | | | | | | | | | | | APAGE ANNUAL SAGIES NET | NET DENET I | *
* | * | | | 143. | | | | | | | | | | | | DPTIMIZATION OBJECTIVE - MAXIMIZE | E . MAXIMI | ZE SYSTE | SYSTEM NET BENEFITS FOR TARGET PROTECTION LEVEL | FITS FOR | TARGET PR | OTECTION | ***** | TFC81 AN | ANFCST
402. | ANCHPR
283. | TANCST
685. | ANDGBS
1177. | ANDMG
334. | TBNFTS
845. | NTBNFT
150. | ## EXHIBIT 5 SIZING RESERVOIR, PUMPING PLANT AND DIVERSION (Unconstrained) | | | | | | | 0 | | | | LEGEND | | N = NEW INPUT DATA | R = REVISED INDIT | J- Dryrers | O C. KEVISEU INPUI |----------|---------------------------------------|---|------------|------|----------|--------|---|----------|----------|--------|----------|--------------------|-------------------|------------|--------------------|------|------|-------------|-----|------|-------|------|-------------|-------|-------|----|------------|----------|-----|--------------|-------|------|-----|------|------|------|-----| | | | | | | Š | 300 | 27.5 | ~ | i is | | | | | | 3000 | 2 | 720 | | | | | | • | A48 | | | | \$ | | = | | | 65 | 300 | 272 | 280 | 7 | | | 3. | 0 | | - | . S. | 1920 | ~ | 0 < | , W | | | | | | 21000 | 110 | 0000 | | 0 | | | | G. | 56.20 | i i | ٠ | | o• # | | ? • • | | - | 5.5 | 1920 | 3330 | 365 | 67 | | | 3,25 | | | | 375 | 1290 | 266 | 2 K | <u>ک</u> | | | | | 7050 | 15500 | 1090 | 5550 | | | | | | ~ | 4800 | 3 | 'n | | 3,5 | | ٠ <u>٠</u> | | | 175 | 20 | 3980 | 0,47 | 53 | | | ର ଜ
ଅନ୍ତ
ଅ | 2 | - | | 190 | 1040 | 4600 | n o | 2 | | | | | 0.23 | 11500 | • | 4950 | | | 6300 | 24000 | | • | 4220 | | 3 | | o. N | 1.5 | ٠,
و | | | 0 | 20 | 0 | 909 | 10 | | | 1.50 | | | | S | 0
6 | 2100
775 | | 8 | N | | ٠ | • | | 0 | 1060 | 1 | ACH | | 80 | 10250 | | ₩. | 000 | 21000 | ۲. | 0 | å | • | • | 5 | | 85 | 910 | 5100 | 775 | 99 | | | 1.00 | | | | 50 | 9 6 | 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 30 | | | ٥ ، | > | 'n | 6800 | 1045 | 3600 | ION RE | - | | 6100 | | in o | 2002 | 15100 | ٢ | 5 . | S | | `. |) • · | | 20 | 840 | 5370 | 566 | 77 | | | 0.70 | | 25 E 25 E | • | 33 | 000 | |) is | 33 | | | • | | 975.0 | 5200 | 1030 | 3000 | MODIFICAT | 100 | 076 | 2050 | - | 9.
g | 1740 | 12100 | v. | 1.2 | | | n c | • | | 33 | 900 | 5360 | 1250 | 95 | | 2 | 0.50 | | = | 35.1 | 2 | 760 | 0251 | 120 | 5 | 0 | COLAVOIR | | | 200 | 0007 | 1015 | 2400 | CHANNEL | | - | 1020 | • | | 1380 | 10000 | | 1.0 | • | | - 0 | | 35.1 | N | 2 | 5080 | 1540 | 120 | | | 0.30 | | 2 <u>1</u> | | 72 | 710 | 0000 | 160 | €. | 0 | 200 | | | ٥ | C | 1000 | 1500 | 930
TIAL | | ŝ | 500 | 9 | v | . ~ | 8540 | • | ٠. | | • | · · | | | 54 | ~ | 0097 | 1840 | 160 | |)
(4) | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | POTEN | • | 70 | 0000 | 000 | 215 | 40 | 0 | 2 | | _ | 25000 | 0 | 596 | • | POTEN | | . 0 | - 1 | 1050 | ۰
د
د | 1030 | 7340 | 0 | • | | | , r | | 7 | 7.2 | 099 | 3950 | 500 | 215 | | | | | | | | | | | | <u>LEGEND</u> | N = NEW INPUT DATA | R = REVISED INPUT DATA | | | | | | | | | | | | | | | | | News. | |---|------|----------------------|---------------------------|---|-------|--------------|-------|-------|----------------|---------------|--------------------|------------------------|----------------|------------------|-------------|------|------------|--------------------|------------|---|--------|---|--------|--------------|-------|------|-------|-------|-----------------| | | | | | | | | .35 | | 6480 | 16.4 | | | | 1000 | 006 | : C | • | | | | | | | | | | 76000 | 11250 | 583 | | | | 20000 | >0 * 0 | • | | | 'n | | 02 9 \$ | 13.9 | | | (|)

 -
 | 110 | ⊋ - | <u>.</u> | | | | | • | | | | | 50000 | 10650 | 0.7C | | • | | 15000 |)
)
(| | | | | | 000 | 8. | | | • | 4 N | 1330 |
 | • | | | | | | | | 10000 | 8670 | 37000 | 0000 | 390 | | | 7 | 10000 |) —
) | | 6300 | 24000 | ٠. | | 0 W | Ø. | | | 7.7 | 7 OS | 1530 | 30 |) <u>-</u> | | - | | 7 | • | • | | 8000 | 7860 | 28000 | 7050 | 300 | | | | 7500 | 医阴道氏征 | | 3080 | 10250 | | 500. | 21000 | 7.2 | 20 ° 1 | | å | 302 | 1690 | 200 | 0 | | N | | | | | 8080 | 0009 | 0009 | 20000 | 5850 | \$0 5 °2 | | 0 | | 50504
50004 | ASS RFAC | | 2135 | 610 0 | S. 51 | 20°C | 15100 | 2.0 | ~ .
• . | Ę | | 280 | 1810 | 25.5 | = | POOL | la. | • | | • | | 100 | 1000 | 2300 | 12500 | 3150 | 501 | | - | | 3750 | LEVEE AND/OR BYPASS REACH | | 940 | 2020 | · 5. | 1.05 | 15100 | 3
N | 54.5 | FUREBAY PUR | | | 1800 | | . | TO FOREBAY POOL | PLANT SITE | | | | | 001 | 1000 | 1909 | 7000 | 1125 | 26.3 | | | | 2500
2500
2600 | LEVEE A | | S + 7 | 0201
• | · 5. | 0 4 5 | 10000 | 9. | 3 | .OW TO FC | 0 69
0
1 | 255 | 1650
2.0 | ; 5 | I | NFLOW TO | PUMPING P | | 100000 | | 100000 | 1200
1500 | 200 | 0001 | 4000 | 7.5 | ç | | | 2000 | 1250 | 2030
OTENTIAL | | 20 | 200
19 | 5°S |
 | 6540 | ° . | 30 | OCAL INFI | • | 230 | 1540 | 5.0 | <u>~</u> ⊊ | COMBINED INFLOW | PROPOSED P | | 1200 | | 007 | 1500
1 | 250 | 20 | 2300 | 17° | 0
•
• | | | | 2000 | | - | | 2030 | • ; | 200 | 7340 | ٥,
د | | • | - · | 220 | 730 | 72 | <u>~</u> ~ | , ປ _ີ . | - = | | ••• | - | •• | 0000 | 00 | 302 | 1500 | 00 |) D
O | | FLOOD CONTROL SYSTEM COMPONENT OPTIMIZATION | T AND DIVERSION | |---|------------------------------------| | TEM COMPONENT | PUMPING PLAN | | FLOOD CONTROL SYS | SIZING RESERVOIR,
UNCONSTRAINED | | | | # 1000 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° | | V TANCST ANDMG D FTN(NC) 0 432,840 631,578 ,106E+04 | V TANCST ANDMG O FTN(NC)
0 431,170 634,120 ,1076+04 | V TANCST ANDMG G FIN(NC)
0 429,500 636,695 ,107E+04 | |--|--|--|-------------------|---|--|--| | z o | 0
7
7 | 9 \1Q | | 083 DEV | 08J DEV | 083 DEV | | IPLT IPRT NGTAN
0 3 | 3,25 4,40 | - 005
- 005 | | VARCM1) | VAR(M1) | VAR(M1) | | THRC IPLT | ERFURMED
OH 1
1.50 2.20 | | PUT FAN
0,0000 | VAR(M) | VAR(H) | VAR(M) | | SPECIFICATION IHR IMIN METRO | MULTI-PLAN ANALYSES TO BE PERFURMED NPLAN 2 NRTIOM 9 LRTIOM 1 .50 .50 .70 1.00 1.50 2. | SYSTEM OPTIMIZATION
VAR 5
0. 0. | FIXED COST INPUT | NC 1 1 1 1 1 1 | NO. | NO N | | JOB SI | TI-PLAN ANAL
NPLANE 2 P | VAR 4 | #
400 | | | | | Z T | MUL. | VAR 3 | | | | | | 00 | RTIUSE | VAR 2 | | | | | | | | ¥ | | | | | .1066E+04 *1065E+04 .1064E+04 OBJECTIVE FUNCTION FOR VARIABLE 1 | VAR 1 ADJ FRUM 4000.00 TO | 5055,27 | Z → | Σ.
Σ. | VAR(M)
500E+03 | VARCH1) | 08J DEV
0.000 | TANCST
469,391 | ANDMG 582,004 | 0 FTN(NC)
.105E+04 | |-----------------------------------|-----------|-----------|-------------------|--------------------|---------------------|------------------|-------------------|--------------------|-----------------------| | | | SN | 7 M | VAR(M) | VAR(M1) | OBJ DEV | TANCST
469,027 | ANDMG (582,496 | . FTN(NC) . | | | | S | Ξ ~ | VARCH) | VAR(M1) | 08J DEV | TANCST 468.664 | ANDMG (| . 10SE+04 | | OBJECTIVE FUNCTION FOR VARIABLE 7 | .1051E+04 | .1052E+0 | 9.4 | ,1052E+04 | | | | energy | • · | | VAR 7 ADJ FROM 500.00 TO | 750.00 | 2- | E O | . 100E+04 | VAR(M1) | 083 DEV | TANCST
487,619 | ANDMG (558,766 | O FIN(NC) | | | | S.W. | E O | VAR(M) | VAR(M1) | 083 DEV | TANCST
486.738 | ANDMG 6 | * TINCES | | | | UM
Z | E O | VAR(M)
.980E+03 | VAR(M1) | 08J DEV | 1ANCS7 | ANDMG C | 0 FTN(NC) | | OBJECTIVE FUNCTION FOR VARIABLE 9 | .1046E+04 | .1047E+0 | 4 | .1047E+04 | | | | | | | VAR 9 ADJ FRUM 1000.00 TO | 1500,00 | 2 | E - | VAR(M)
.506E+04 | VAR(M1)
.150E+04 | 00000 | TANCST
513,309 | ANDMG C
505.468 | 0 FTN(NC) | | | | S W | E 4 | VAR(M)
.500E+04 | VAR(M1) | 083 DEV | TANCST
511.556 | ANDMG 0
507,597 | . 1026+04 | | | | S.W | M 4 | VAR(M) | VAR(M1) | 083 DEV
0.000 | TANCST
509,803 | ANDHG 0
509,724 | O FINCNC) | | OBJECTIVE FUNCTION FOR VARIABLE 1 | .1019E+04 | .1019E+0 | ,
2 | .1020E+04 | | | | | | | VAR 1 ADJ FRUM 5055,27 TO | 7582.91 | ON THE | Σ Γ | VAR(M) .750E+03 | VAR(M1)
.758E+04 | 087 DEV | TANCST
S77.444 | ANDMG 0 | 0 FIN(NC) | | | | 2 N | Σ× | VAR(M) | VAR (M1) | 087 080 | TANCST
576.896 | ANDMG U | . 101E+04 | | | | UMZ | E L | VAR(M)
.735E+03 | VAR(M1)
.758E+04 | 08J DEV
0.000 | TANCST
576,349 | ANDMG O | . 101E+04 | | OBJECTIVE FUNCTION FOR VARIABLE 7 | .1005E+04 | .1005E+04 | 7 | .1005E+04 | | | | | | | | | | 9 1 | E O | VARCM) | VAR(M1) | 000 ° 0 | TANCST
604.961 | ANDMG O FTN(NC)
400,764 .101E+06 | C 2 | |---------------------------------|------------|-----------|-------------|--|--------------------|---------------------|------------------|-------------------|-------------------------------------|------------| | VAR 7 ADJ FROM | 750,00 10 | 862,50 | 2- | E O | VAR(M) | VAR(M1)
.863E+03 | 08J DEV | TANCST
585,680 | ANDMG O FINCNC)
418,435 ,100E+04 | . a | | | | | O.N. | Σ Φ | VAR(M) | VAR(M1)
.863E+03 | 083 050 | 1ANCST
584.910 | ANDMG O FTN(NC)
419,866 ,100E+04 | . . | | | | | SW
Z | E 0 | VAR(M) | VAR(M1)
.863E+03 | 08J DEV
0.000 | TANCST
584,139 | ANDMG O FIN(NC) | 0.2 | | DBJECTIVE FUNCTION FOR VARIABLE | VARIABLE 9 | .1004E+04 | *1005E+04 | | .1005E+04 | | | | | | | VAR 9 ADJ FRUM | 1500,00 10 | 2250,00 | ů.
T | Σ σ
Σ | VAR(M)
.758E+04 | VAR(M1)
.225E+04 | 08J DEV | TANCST
628.344 | ANDMG O FIN(NC)
357,691 .986E+03 | O M | | | | | 2N | Σ 7
Σ 6 | VAR(M) | VAR(M1)
.225E+04 | 083 DEV | TANCST
626,570 | ANDMG O FIN(NC)
359,038 ,986E+01 | - m | | | | | S M | Σ° | VAR(M) | VAR(M1) | 08J DEV | TANCST
624,795 | ANDMG 0 FIN(NC)
360,389 ,985E+03 | | | OBJECTIVE FUNCTION FOR VARIABLE | VARTABLE 1 | .9860E+03 | -9856E+03 | | *9852E+03 | | | | | | | | | | O- | E M | VAR(M) | VAR(M1) | 08J DEV | TANCST
S64,209 | 432,969 .997E+03 | | | VAR 1 ADJ FROM | 7582,91 10 | 6824,62 | Ow
Z | ## ## ## ## ## ## ## ## ## ## ## ## ## | VARCM3
*863E+03 | VAR(M1)
•682E+04 | 083 DEV
0,000 | TANCST
610.603 | ANDMG O FTN(NC)
371,331 ,982E+03 | | | | | | UN
Z | E | VAR(M) | VAR(M1) | 08J DEV | TANCST
609,970 | ANDMG O FIN(NC)
371.968 .982E+03 | | | | | | O M | E M | VAR(M) | VAR(M1)
.682E+04 | 08J DEV | TANCST
609,337 | ANDMG O FTN(NC)
372,543 ,982E+03 | | | OBJECTIVE FUNCTION FOR VARIABLE | VARIABLE 7 | .98196+03 | .9819E+03 | | .9819E+03 | | | | | | | | | | U m | Z
Z
Z D | VARCM) | VAR(M1) | 083 DEV | TANCST
641.426 | ANDMG O FIN(NC)
346,294 ,988E+03 | | | | | | U = Z | E O | VAR(M) | VAR(M1) - 992E+03 | 08J DEV | TANCST
620,095 | ANDMG O FIN(NC)
364,329 ,984E+03 | | | | | | U = | E O | VAR(M) | VAR(M1) | 08J DEV | TANCST
613,450 | ANDMG O FTN(NC)
369.048 ,982E+03 | | | | | | S. | EO | VAR(M) | VAR(M1)
.863E+03 | 08J 0EV | TANCST
610.603 | 371.331 .982E+03 | | | | | | UN
Z | E O | VAR(M) | VAR(M1)
863E+03 | 08J DEV | TANCST
609.075 | ANDMG O FTN(NC)
372,993 .982E+03 | | | | | | UM
2 | Σ Q | VAR(M) .221E+04 | VAR(M1) | 083 DEV | TANCST
607.547 | ANDMG OF TN(NC)
374,569 ,982E+03 | | | OBJECTIVE FUNCTION FOR VARIABLE | VARIABLE 9 | .98198+03 | .9821E+03 | | .9821E+03 | | | | | | | | | D H | Σ 1 | VAR(M) | VAR(M1)
358E+04 | 08J DEV | 1ANCST | ANDMG D FIN(NC)
307,995 ,995E+03 | |--|-----------|------------|------------|--------------------|---------------------|------------------|-------------------|-------------------------------------| | | | Ž. | Σ of
Σ | VARCH) | VAR(M1)
.259E+04 | 08J DEV | TANCST
633,517 | ANDMG O FTN(NC) 350.327 .984E+03 | | | | 2 | I H | VAR(H) | VAR(M1) | 08J DEV
0.000 | TANCST
617,477 | 364,816 .982E+03 | | | | U F | E o | VAR(M) | VAR(M1) | 083 DEV
0,000 | TANCST
610.603 | 371.331 .982E+03
| | | | S W | E | VAR(M) .676E+04 | VAR(M1) | 08J DEV | TANCST
608.900 | 372.610 .982E+03 | | | | S W | Σ ·· | VAR(H) | VAR(H1) | 087 050 | TANCST
607.137 | ANDMG G FIN(NC)
373,910 ,981E+03 | | DBJECTIVE FUNCTION FOR VARIABLE 1 . 98 | 819E+03 | 9815E+0 | M | .9810E+03 | | | | | | | | Ž → | Σ - | VAR(M)
.863E+03 | VAR(M1)
4556+04 | 063 067 | TANCST
546,666 | ANDMG O FTN(NC)
454,123 .100E+04 | | | | Z
O → | Σ Γ | VAR(M)
.863E+03 | VARCM13 | 083 DEV
0.000 | TANCST
593,204 | ANDMG O FIN(NC)
390,554 ,9846+03 | | VAR 1 ADJ FRUM 6824.62 TO 6 | 6619,88 | Z
O | Σ ~ | VAR(M)
.863E+03 | VAR(M1) | 083 080 | TANCST
605,380 | ANDMG OFTN(NC) 375,403 .981E+03 | | | | S W | Σ ħ | VAR(H)
.854E+03 | VAR(M1) | 083 DEV | TANCO1 | ANDHG Q FTN(NC)
376,040 ,981E+03 | | | | S W | Σ ~ | VAR(M) .845E+03 | VAR(M1) | 08J DEV | TANCST
604,114 | 376.619 .981E+03 | | OBJECTIVE FUNCTION FOR VARIABLE 7 ,96 | 9808E+03 | .9808E+0 | M | .9807E+03 | | | | | | | | U → | Σ Φ | VAR(M) | VAR(M1) | 08J DEV | TANCST
636,203 | 350,384 ,987E+03 | | | | Z → | E O | VAR(M) | VAR(M1) | 08J DEV | TANCST
614.872 | ANDMG O FIN(NC) | | | | 2 → | E O | VAR(M) | VAR(M1) | 08J DEV | 1 ANCST | ANDMG O FIN(NC)
373,110 ,981E+03 | | | | U #
2 | E O | VAR(M) | VAR(M1) | 085 DEV | TANCST
605,380 | ANDMG O FIN(NC)
375,403 .981E+03 | | | | U N
Z | Ε O | VAR(M) | VAR(M1) | 08J DEV | TANCST
603,852 | ANDMG O FININC)
377.068 .981E+03 | | | | S W | E O | VAR(M) .221E+04 | VAR(M1) | 08J DEV | TANCST
602,325 | 378,649 .981E+03 | | OBJECTIVE FUNCTION FOR VARIABLE 9 . 98 | .9808E+03 | .9809E+03 | × | *9810E+03 | | | | | | ANDMG O FIN(NC)
312,015 _ 9946+03 | 354,389 983E+03 | 368,885 .981E+03 | ANDMG OFTN(NC)
375,403 981E+03 | 377,823 ,981E+03 | 379,187 ,981E+03 | | 374,796 981E+03 | . O | ANDHG D FTN(NC)
375,348 .981E+03 | | | | | | | | |--------------------------------------|-------------------|-------------------|-----------------------------------|-------------------|-------------------|---------------------------------|-------------------|-------------------|-------------------------------------|-------------|-------------|--|----------------------|------------|------------|----------------| | TANCST
681,762 | TANCST
628.294 | TANCST
612,254 | TANCST
605,380 | TANCST
603,688 | TANCST
601,999 | | TANCST
606,020 | TANCST
605,572 | TANCST
605.438 | *** | | IAUTO
0 | | # C 37 F | 000 | 5 - 0
> - 0 | | 084 DEV
0,000 | 08J DEV | 083 DEV | 08J DEV | 08J DEV
0,000 | 08J CEV
0.000 | | OBJ DEV
0,000 | 083 DEV | 083 DEV | 在門外外在在在衛門在衛 | | ISTAGE IA | | | | 12. | | VAR(M1) | VAR(M1) | VAR(N1) | VAR(M1) | VAR(M1) | VAR(M1) | | VAR(M1) | VAR(M1) | VAR(M1) | *** | | INAME | TAPE | | ią. | M.L. | | VAR(M) | VAR(M) | VAR(M) | VAR(M) . 602E+04 | VAR(M) | VAR(M) | .9812E+03 | VAR(M) .863E+03 | VAR(M) | VAR(M) .863E+03 | *** | NOIL | JPLT JPRT | READ FROM TAPE | | 39 | | |
Σ | E TO | E = | E ++ | E of | | 103 | E N | 7 A 1 | ¥ ~ | * * | COMPUTATION | | HYDROGRAPHS | 228 | 1275 | 17. | | 2 | Ž. | 2- | ∑ ~ | ON
Z | 2.7 | 0+36086+ | 2 | 2 | 2 | *** | RUNUFF | UW
IECON ITAPE
0 2 | | | 243
249 | 0- &
• | | | | | | | | .9808E+03 | | | | * * | SUB-AREA | RESERVOIR INFLOW
STAG ICOMP IEC
10 0 | PREVIOUSLY GENERATED | 8.
2005 | 313. | 4 8
8 | | | | | | | | 6. | | | | *** | | A H | PREVI | 1001 | 385 | 30. | | | | | | | | R VARIABLE | | | | ** | | PUTENTI | | 178. | 460. | 10. | | | | | | | | UNCTION FO | | | | *** | | | | | 550 | 10. | | | | | | | | UBJECTIVE FUNCTION FOR VARIABLE | | | | | | | | | | | | | | | | | 1120. | 30000°
69566° | | * * * * * * * * * * * * * * * * * * * | 7443.
876.
1186.
1186.
776. | | |-------|--------------|---|--|--------------------|-----------------------------|---|------------|--|---|---| | *** | | IAUTO
0 | | | 21000*
1105*
6000* | 24648 .
54095 | | 27. 39
72. 219
81. 587
66. 239
92. 83 | 734. 76. 390. 140. 220. 118. 97. 118. 77. 77. 77. 77. 77. 77. 77. 77. 77. 7 | | | * * | | 10 H C C C C C C C C C C C C C C C C C C | # 0
% | 0 00 0 | 15500.
1090.
5550. | 18388.
42512. | | → D is N | | m • • • • • • | | *** | | I NAME
1 I DVR | STORA
0 0
10RA | T ELEVT | 11500.
1075.
4950. | | | 117
145
568
518
109
109 | | 1AL VOLUME
16724 • 474 • 74 18 76 1383 • 1706 • | | *** | | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 18K
0,000 | 17 COUT | 000°
060°
350° | FLOW FUNCTION
0590,
5376, 28966 | 101 | 1888
1888
1888
1888
1888
1888
1888
188 | 722.
808.
1319.
7958. | *HUUR TUT
279*
8*
74
18*76
1383*
1706* | | ** | ROUTING | C CPLT OPLT O O O O O O | ATA ICPT 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | DATA RDSCNT | 00°* | 5 | PLAN Z, RT | ************************************** | 720
1263
1317
1917
8085 | 11008
110°
110°
110°
110°
110°
110°
110° | | ***** | HYDROGRAPH R | CON ITAPE
0 0
PLAN 1
ROUTING DAT | PLAN Z
FES ISAME
1 SAME
1 O O O O O O O O | SERVOIR
RANC | % * 6 8 | 620.
ETIC STORAGE
6620.
1653. | 110, P | 101.
494.
560. | \$708
719.
789.
1197.
1344.
1016.
818. | 2 | | | HYD | H | AVG IRE
0.00
STDL L | CC08
100,00 | 5200
1030
3000 | OF 6620
SYNTHETI
3843. | STATION | 150
150
150
150
150
150
150
150
150
150 | 719.
780.
1126.
1049. | 588.
168.
16.
38.
415.
56.
66.
66. | | *** | | SERVOI | LCSS A .000 0.9 | VL EXPL | 1015.
2400. | STURAGE
1934.
827. | <i>o</i> , | 77.
77.
529.
579.
174. | 00000000000000000000000000000000000000 | 9 W + 8 W
+ 8 W + | | * | | PROPOSED RE 181 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | • 0 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • | COGL ELEVI. | 2500.
1000.
1500. | 1019.
1019. | | | | OCAS
INCHES
ACAMAN | | *** | | | | CAPMN CE
0. 200 | 965. | 90 91 91 91 91 91 91 91 91 91 91 91 91 91 | | 25 E E E E E E E E E E E E E E E E E E E | 719
761
988
1400
1117 | | | ** | | | | CAPHX CA | CAPACITY = ELEVATIONS COSTS | ET CREST ELEVATION STORAGE= 7. | | 7.7.2.2.2.2.2.3.3.3.3.3.3.3.3.3.3.3.3.3. | 719.
752.
1207.
1106. | | OUTLET CREST MAXIMUM STORAGE # | | | | STATION | 110, PL | PLAN Z, RTIO | a | | - | | |---|--|---|---|---|---|---|---|--|--| | 10051.
10051.
10051. | 15 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 78
16-13
16-64
16-66
14-66 | 80.
702.
4763.
7580.
1631. | 0UTFLOW
86.
774.
7931.
6598.
1614. | 100001
100001
10001
10001 | 1374
1374
150911
150811
15080 | 220.
12179.
1045.
1396. | 11 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | 1217
4177
9273
6805
5671 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 772
772
6581
6581
6529
6529 | 773.
7520.
8330.
6469.
5332. | \$708
1818
8436
8050
6358 | 788.
1987.
9093.
7781.
6245. | 815*
2177*
9495*
7534*
6130 | 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 27672
9664
7116
5901
4781 | 20000000000000000000000000000000000000 | | | 4 7 00 00 00 00 00 00 00 00 00 00 00 00 0 | O O O O O O O O O O O O O O O O O O O | 11340U
11340U
352
756.00
56448
XIMUM 8 | 24mH0U
6097
173
164.1
12099
14924 | 72-940U
22-940U
201-1-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9 | 701AL | 7 VOLUME
7 7 7 2 2 3 7 4 9 2 2 1 2 8 2 3 3 4 8 2 3 4 8 3 4 8 3 4 8 3 4 8 3 4 8 3 4 8 8 3 4 8 8 3 4 8 8 8 3 4 8 8 8 8 | | | | | | | STATION
RESERVOIR
6619. | 110, PL | 2, RTIO | o . | | | | | 106.
580.
1492.
3137. | 106.
2686.
13430.
1552. | 106.
772.
7339.
11931.
2074.
1505. | 109
847
11245
10483
1673 | 0UTFLOW
116.
896.
14335.
19098.
1938. | 136
9449
6610
17797
1622
1456 | 74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1899
1898
1898
1889
1489 | 434
17597
4620
1872 | 1321
1321
1321
13321
13531 | | 792.
1409.
5537.
70465.
5651. | 16062
10062
10087
10087 | 793.
98613.
97595.
67442. | 0.000
0.000
0.000
0.000
0.000
0.000
0.000 | 800
800
2256
10289
10774
6520 | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 851.
11252.
6055.
5186. | 934.
3109.
11322.
7746.
6189. | 1065
3599
11173
7478
6077 | 1227
4390
10867
7247
5964 | | | THOUS A | OC CC C | PEAK 6"HUU
8164, 16940
514, 480
114,0
114,0 | 24°HUUR
262°
9 248°69
3 248°69
18329°
22608° | 72-HGUR
128-
11-36-
21265-
21265-
26230- | TOTAL | 25 VOLLUME
17242.
11.32.
288.53.
21265. | | | | | | | MAXIMUM ST | STORAGE = | 11322. | | | | | | **** | * * * | *** | *** | * | *** | ¥ | *** | * | ******** | | |----------------|---|---------------------------|---|---------------------------------------|---|---|--|--|----------|---| | | | | | HYDROGE | HYDROGRAPH ROUTING | NG | | | | | | | POTENTI | AL CHANT
ISTAG
1030 | POTENTIAL CHANNEL MODIFICATION REACH ISTAG ICOMP IECON ITAPE 1030 1 1 0 | ICATION
IECON | REACH
ITAPE
0 | JPL.T | JPRT INAME
0 | E ISTAGE | IAUTO | | | | 0°0
\$\$U 7 0 | 000°0
\$3073 | AVG
0 * 00 | ALL PLAN
ROUT
IPES | ALL PLANS HAVE SAME
ROUTING DATA
IRES ISAME I | ⊢ 0 | O O O O O | 8.0
8.0 | | | | | | 18178 | NSTDL | LAG | | 0 000*0 | TSK STORA
0,000 | | | | | KAGEH
FLOZH | 0. 50°. | | 475.
1020. | 2050. | 6100. | 10250 | 6300. | 00 | •• | | | | 1 | | STATION | | 1030, PLAN 1, RTIO | 1, RTIO 1 | | | | | | | 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | PEAK 6 | 6**HOUR
907*
26* | 24-HOUR
613. | 72-HUUR
289. | TOTAL VOLUME
17369. | 15 UME
492. | | p | | | EX DO SOUTH | ウェース | | • • • • • • • • • • • • • • • • • • • | 11100 | 19.49 | 554 | 19.49
1436. | | | | | | | MAXIX | MAXIMUM STORAGE | 10E | 434. | | | | | | | | | STATION | | 1030, PLAN 1, RTID 2 | 1, RTIO 2 | | | | | | | DA
DACHES
AACHTA | | PE 41 11 11 11 11 11 11 11 11 11 11 11 11 | 1091.
31.
7.34
7.34
668. | 24 HUUR
733 - 733 - 145 - 73
145 - 73
1794 - | 72*HUUR
347*
10*
172* 492
1723* | TOTAL VOLUME
20842.
590.
23.38
1723. | 20042.
2042.
590.
23.38
2723.
2126. | | | | | | | MAXI | MAXIMUM STORAGE | i GE | \$20 | | | | | ILPR 0 | | 70
20 34
00 50 50 | 000 | 000 | 500 | . 700 | 000 | .300 | 000 | 000 | 000 | 000 | 000% | | | ,
1 | 00.0 | | 89° | 5.12 | 4.39 | 0 1 C | 40 | 21,97 | |
10
20
20
20
20
20
20
20
20
20
20
20
20
20 | . 0 | | 00.0 | 00.00 | 80 | | .36 | 3,33 | 18.63 | |--------|-----------------------------|--|--|---|---|--|---|---|--|--|---|---------------------------------------|--
--|---|---|--|---|--|--|--|--|---
--|--|---|---|---|---|---|---|---|---
---| | | Ξ` | | | . ۳. | - 2 | ۰,۰ | | =: | 1 | 5 | ~ ? | Ž 8 | DATA | | | ر
د د | 30 | ار
در در | 2 60
2 73 | 14 | 20 c
20 c | 200 | 20 | | | 00 | 00 | 000 | 0 6 | 28 | 27 C | , 6
1 0 7 | 2.0 | 89
19 | | | ع تعا | • | 500 | S | u c | າ ເຄ | 0 | ~ a | 9 | 0 | ٠, | 5 ~ | PR THIS | | 1 1 2 2 | - | | | | | | | 10. | | a | . 0 | ٥ | ٠ | • | • | | | | x 0 | | PLAN 1 | ين د | 000 | 100
200 | 300 | 300 | 7 c00 | 600 | 700 | 300 | 000 | 200 | 300
300 | MAGES F | PLAN 1 | - 5 | | .07 | 07. | * *
! w!
* #2 | 12. | 7 is | No. | 1.59 | PLAN 2 | | 09.0 | 00.0 | 00.0 | 00.0 | .08 | • 07 |
 | ₹, | 1,35 | | 0 | <u>-</u> | ċ | • | | | | | | | - | <u>.</u> | | <u>م</u> | 0 | Σ | | œ | 'E | , per | 7 | c c | , | Œ | | 22 | | 0 |
 | ⇒ N | ç | . . | - no | _ | 40 | | 1.0 | Ξ 5 | 0.0 | C 0 | 0.0 | 0.0 | 000 | 00 | 00 | 0.0 | 0.0 | 0.0 | 000 | ANNUA | Ü. | Ü | 0 | 0 | u e | 7.7 | ۍ .
د د | | | . 52
. 53
. 54 | ~ | v | 0.0 | 0.0 | 0 | ٠ ٠ | 1.2 | | ຸ້ | ທ | 28.46 | | ATIO | en c | 0 | ~.ળ
~ુવ | ິ້ | ^ ° | | · · | 200 | | 0 m | 2 | | RAGE. | 110N | -موني | | ń. | o n | | | C ~ | | | gares . | | | • | | | | | | | | | . 31 | x | • | | | • | | • | • | | | | | 74

 | . ±. € | Š ≥
a., | 30 | 57. | | Œ. | * · | ñ :e
- c | 0. | 0 × 6 | E | z
Z | ~~
~~
• | 1.75 | 77. | .786 | .39 | . 150 | 7 0 | 546 | 35
F F | | ATA F | | | | | | | | | | | 77 | → (& . | | ିଲ ଓ
ଜଣ୍ଡ
ଓଡ଼ିଆ | T X C | 000.4 | 1. ab 2. | 1.769 | . R67 | M 10 00 00 00 00 00 00 00 00 00 00 00 00 | | 900. | . ≪. | 100 S | | 000. | 462 | ~ 0
0 4
0 F | | | | | 5 A N.E. | VG ANN | | 0.0 | 700 | 200 | 500 | 005 | 000 | 700 | .500 | 250 | 150 | 100 | 000 | 003 | ADJUSTRE | LOUD DAMAC | | | 6 2 |
 | 2 | о
С | | 93 | Ā | DAMAG | | • | 4 | · · | - | | | | >
4 | Ą | | | ATA FOR STATION 1030 PLAN 1 | ATA FOR STATION 1030 PLAN 1 PFAK SOM TYPE 1 TYPE 2 1030. 0.000 0.000 | ATA FOR STATION 1030 PLAN 1 PEAK SOM TYPE 1 TYPE 2 1030, 0.000 0.000 1130, 0.000 0.000 | ATA FOR STATION 1030 PLAN 1
PFAK SUM TYPE 1 TYPE 2
1030, 0.000 0.000 0.000
1130, 0.000 0.000
1350, 1.660 .500 | ATA FOR STATION 1030 PLAN 1
PEAK SIM TYPE 1 TYPE 2
1030 0.000 0.000 0.000
1130 0.000 0.000 0.000
150 1.600 .500
2280 5.000 330 1.500 | ATA FOR STATION 1030 PLAN 1 TYPE 2 1030 0.000 0.000 0.000 1350. 0.000 0.000 0.000 1350. 1.500 2.400 2.400 2.500 1.500 2. | ATA FOR STATION 1030 PLAN 1 TYPE 2 1030 0.000 0.000 0.000 0.000 1350. 0.000 0.000 0.000 1350. 2.400 2.400 3.500 3.500 3.500 4220. 42600 3.500 3.500 3.500 3.500 3.500 | ATA FOR STATION 1030 PLAN 1 TYPE 2 1000 0.000 0.000 0.000 0.000 1350. 1.560 0.200 0.500 1500 1500 1500 1500 1500 1500 1 | ATA FOR STATION 1030 PLAN 1 TYPE 2 1030 0.000 0.000 0.000 0.000 1130. 1.500 1.500 2.400 2.400 2.500 2.500 4.700 4.700 2.500 2. | ATA FOR STATION 1030 PLAN 1 TYPE 2 1030 0.000
0.000 0. | # # # # # # # # # # # # # # # # # # # | # # # # # # # # # # # # # # # # # # # | ATA FOR STATION 1030 PLAN TYPE | ATA FOR STATION 1030 PLAN 1 TYPE 2 1030 0.000 0. | ATA FOR STATION 1030 PLAN 1 PEAK STATION 1030 PLAN 1 1150 0.000 0.000 0.000 1150 1.600 0.000 0.000 1250 1.600 1.000 1.500 1250 1.500 1.500 1.500 1250 1.500 1.500 1.500 1150 1.500 1.500 1.500 1150 1.500 1.500 1.500 11510 1.500 1.500 1.500 11510 1.500 1.500 1.500 11510 1.500 1.500 1.500 11510 1.500 1.500 1.500 11510 1.500 1.500 1.500 11510 1.500 1.500 1.500 11510 1.500 1.500 1.500 11510 1.500 1.500 1.500 11510 1.500 1.500 1.500 | ATA FOR STATION 1030 PLAN 1 TYPE 2 1000 0.000 0.000 1500 1500 0.000 0.000 0.000 0.000 1500 15 | ATA FOR STATION 1030 PLAN 1 TYPE 2 1000 0. | ATA FOR STATION 1030 PLAN 1 TYPE 2 1000 0.000 0.000 1500 1500 0.000 0.000 0.000 1500 15 | ATA FOR STATION 1030 PLAN 1 TYPE 2 17PE 2 17PE 1 17PE 2 1500 150 | ATA FOR STATION 1030 PLAN 1 TYPE 2 1000 0. | ATA FOR STATION 1030 PLAN 1 TYPE 2 150 150 150 150 150 150 150 150 150 150 | ATA FOR STATION 1030 PLAN 1 TYPE 2 1150 1150 0.000 0.000 0.000 1150 1150 1 | ATA FOR STATION 1030 PLAN 1 PEAK STATION 1030 PLAN 1 1568 0 0000 0000 0000 1350 1550 1550 1550 15 | ATA FOR STATION 1030 PLAN 1 PEAK SIM TYPE 1 TYPE 2 1030. 0.000 0.000 0.000 1550. 1.600 1.000 1.500 1700. 2.400 2.400 2.900 1700. 2.400 2.900 2.900 1700. 2.400 2.900 1.500 17.00 2.400 2.900 1.500 17.00 2.400 2.900 1.500 17.00 2.400 1.200 1.500 17.00 2.4000 1.200 1.500 17.10 2.40.300 1.200 1.500 17.10 444.300 1.200 1.500 17.10 444.300 1.200 1.500 17.10 444.300 1.200 1.500 17.10 2.400 1.200 1.500 17.10 2.400 1.200 1.500 17.10 2.400 1.200 1.500 17.10 2.400 1.200 1.500 17.10 2.400 1.200 1.200 17.10 2.400 1.200 1.200 17.10
2.400 1.200 1.200 17.10 2.400 1.200 1.200 17.10 2.400 1.700 1.200 17.10 2.400 1.200 1.200 1.200 17.10 2.400 1.200 1.200 1.200 17.10 2.400 1.200 1.200 1.200 17.10 2.400 1.200 1.200 1.200 17.10 2.400 1.200 1.200 1.200 17.10 2.400 1.200 1.200 1.200 17.10 2.400 1.200 1.200 1.200 17.10 2.400 1.200 1.200 1.200 1.200 1.200 1.200 | ### FOR STATION 1030 PLAN 1 PFAK STATION 1030 PLAN 1 1030. 0.000 0.000 0.000 1350. 1.500 2240. 2.400 2240. 300 2240. 300 2250 2260 2260 2270 | ### FOR STATION 1030 PLAN 1 TYPE 2 179E 2 1500 | ### FOR STATION 1030 PLAN 1 PFAK SIM TYPE 1 TYPE 2 1150. 0.000 0.000 0.000 1150. 0.000 0.000 0.000 1250. 1.500 1.000 2.900 #### PAUL | ### FOR STATION 1030 PLAN 1 PFAK SIM TYPE 1 TYPE 2 1150. 0.000 0.000 0.000 1350. 1.600 1.000 2.900 2200. 2200 2.000 2.900 ################################## | ### FOR STATION 1030 PLAN 1 TYPE 2 1790 1150 | ### FOR STATION 1030 PLAN 1 PFAK SIM TYPE 1 TYPE 2 1150 | ### FOR STATION 1030 PLAN 1 PFAK SIM TYPE 1 TYPE 2 1150. 0.000 0.000 0.000 1350. 1.600 1.000 2.900 ### PAUL | ### FOR STATION 1030 PLAN 1 PFAK SIM TYPE 1 TYPE 2 1150. 0.000 0.000 0.000 1350. 1.600 1.000 0.000 2200. 2200 2.000 2.900 ################################## | ### FOR STATION 1030 PLAN 1 PFAK SIM TYPE 1 TYPE 2 1150. 0.000 0.000 0.000 1350. 1.600 1.000 0.000 2200. 2200 2.000 2.900 ################################## | ### FOR STATION 1030 PLAN 1 PFAK SUM TYPE 1 TYPE 2 1150. 0.000 0.000 1250. 0.000 0.000 0.000 1250. 2.000 2.000 2.000 2200. 2.000 3.000 2.200 4220. 11.000 3.000 2.200 4220. 12.000 3.000 3.000 4220. 12.000 3.000 3.000 15100. 22.000 1.000 6.000 15100. 22.000 1.000 6.000 15100. 22.000 1.000 6.000 15100. 22.000 1.000 6.000 15100. 22.000 1.000 6.000 15100. 34.500 1.200 10.300 15100. 34.500 1.200 10.300 15100. 34.500 1.200 10.300 15100. 34.500 1.200 10.300 15100. 34.500 1.000 0.00 15100. 34.500 1.000 0.000 15100. 34.500 1.000 0.000 15100. 34.500 1.000 0.000 15100. 34.500 1.000 0.000 15100. 35.50 1.000 0.000 15100. 35.50 1.200 0.000 15100. 35.50 1.200 0.000 15100. 35.50 1.200 0.000 15100. 35.50 1.200 0.000 15100. 35.50 1.200 0.000 15100. 35.50 1.200 0.000 15100. 35.50 1.200 0.000 15100. 35.50 1.200 0.000 15100. 35.50 1.200 0.000 15100. 35.50 1.200 0.000 15100. 35.50 1.200 0.000 15100. 35.50 1.200 0.000 15100. 35.50 1.200 0.000 15100. 35.50 1.200 0.000 15100. 35.50 1.200 0.000 15100. 35.50 1.200 0.000 15100. 35.50 1.200 0.000 15100. 35.50 1.000 0.000 151000. 35.50 1.000 0.000 151000. 35.50 1.000 0.000 151000. | | | | The state of s | | | | | ••• | | 00 | | | |---|---
--|-----------------------------|---|-----------------------------|-----------------|---------|---|-----------|---------|---| | | 44.00
40.00
40.00
40.00 | | | | | | | | | | 4644
456
6456 | | IAUTO | | ## ## ## ## ## ## ## ## ## ## ## ## ## | IAUTD | | | | 00 | | 20000. | | | | | 448
88864
80848 | * | | ~ ~ | | | | | | | 448
4444
4444
4444
4444
4444
4444
4444 | | 1STAGE
0 | | | 1STAGE
0 | LSTR
0 | LSTR | | 00 | | 15000 | | | | INAME | ###################################### | | INAME | I DVR
0 | 1DVR | STORA -1. | • • | | 10000. | | 1000
10000
10000
74040 | | F 0 | ¥ | · · · · · · · · · · · · · · · · · · · | רע
מי | ğ. ο | <u>a.</u> 0 | X O | | ⊢ 0 | 100 | | 4 N 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | JPRT | # 25 4 4 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 | ** | JPRT | 9 0
8 0 | 0
W d I | 1SK
0,000 | 00 | DDSCNT
.05040 | 7500. | 0.1.0 | 2 N 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | | UTATION
JPLT | PH S S S S S S S S S S S S S S S S S S S | 92 | JPLT | IOPT | IOPT | × 000 • 0 | | ANCST
01500 | 5.5 | 2, RTIO | 2002
2005
17. | | F COMP | RATIC 1 | *************************************** | DIVERSION
ITAPE | S D S D S D S D S D S D S D S D S D S D | AN 2
NG DATA
ISAME | AMSKK
O. DOO | • • | ON DATA | 5000 | PLAN | ¥016 | | SUB-AREA RUNOFF COMPUTATION MP IECON ITAPE JPLT 0 0 0 | GENERATED HY
6.
6.
13.
13.
13.
13.
13.
13.
13.
13 | *************************************** | SATE DIV | PLAN 1
ROUTING DATA
IRES ISAME | PLAN
ROUTING
IRES ISA | LAGA | • • | DIVERSION DATA
DVRNN THOVR DANCST
0. 1500, .01500 | 3750. | 20, | MWW
D⇔0404
D+0406
D+0408 | | # H | > Www.
0 4 H M
B @ 0 0 W 4 @
M S | i. | COMO | | | | | | m m | STATION | ### ON ## | | SUE
ICOMP | PREVIOUSLY GE
70. 1340.
70. 1340.
70. 313.
30. 34. | * * | R TO ACCOMODATE ICOMP 1 0 0 | A V G | A V G | NSTDL | 00 | DVRMX
20000. | 2500. | STA | 250
250
250
250
250
250 | | ISTAG
20 | 127 P R E V V V V V V V V V V V V V V V V V V | *** | RESERVOIR
ISTAG
20 | 000000 | 000.0000 | NST PS | | | | | 202
202
302
303
303
403
403
403
403
403
403
403
403 | | | 7 | | DUMMY RE | 0 ° 0
88010 | 0°0
8070 | | 2000. | | 1500. | | | | | 48 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | *
*
* | 3 | G | | | 00 | | 00 | | 1115
4715
473
103 | | | 0000
0000
0000
0000 | ** | | | ** | | | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | * | | | | | STORAGE | | CAPACITY# | | | | W44 400 | 000000 | MW00WF W0FM00
MW00WF W0FM00 | |---|--|--| | | | | | | | | | No F N 00 | 20000 | 40444444444444444444444444444444444444 | | | | 에 (A O 에 | | | | | | N 0 7 7 0 0 | NATANNE COOCO | 00000 N N N N N 00 | | N | 10000000000000000000000000000000000000 | 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | | | | | | | | oo o o | ***** O | M 4 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | | & • • • • | | | | 00.
00.
00.
00.
00.
00.
00.
19.49
14.57.
172. | 81110 | | 040400 | 000000 V | | | N | | ณเกณ | | | 10 17 17 16 13 16 13 16 18 18 18 18 18 18 18 18 18 18 18 18 18 | 20, PLAN
90, PLAN
90, PLAN
90, PLAN
90, PLAN | | 80 | 0 | 20, PL
14.
117.
117.
24.
STOR
0.
0. | | 00477000
F • • • • • • • • • • • • • • • • • • • | 0.000000000000000000000000000000000000 | M 744444 NONGOO | | | E • • • • • • • • • • • • • • • • • • • | | | | ************************************** | 2 | | 0 4 7 7 5 0 | F | 24 | | n. | A STATE OF THE STA | 27 A T I I I I I
I I I I I I I I I I I I I | | | Ф W | | | | • • • • • | | | 0.410.640 | | 030000
00000
00000
00000
00000 | | | οοος – Σ
ω Σω Σμ | | | | THOUS ACTES | | | 0 7 7 0 - 0 | ************************************** | 7 W W W W W W W W W W W W W W W W W W W | | | #
| ALM IN THE STATE OF O | | | | | | 2 M D N + 2 | 00000 | rwuren oana-o | | | | ### ### ### ### ### ### ### ### ### ## | | | | 4-4 | | 0000000 | | | | 288
388
388
388
388
388
388
388
388
388 | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | . 01 | 0 M O C | * •
• • | • • • • • • • • • • • • • • • • • • • | • | | |---------------------------------------|--|--------------|----------|--|---|-------------|-----------------|------------|---------------------------------------|--|-----------------| | 000000 | | | | 243.
869. | - 3 M M
- 3 M M
- 3 M M | 2,2 | : М
- М ЗГОО | | | | | | 000000 | 200LUME
5661.
583.
73.11
1703. | | | 610
610
80
80 | 000
000
174
144 | 143 CV | M
33340 | | 4
0
0
0
0
0 | | | | 00000 | TOTAL | | ₩. | 000 | | · NO | | 00 | | | | | | 72-HDUR
343.
10.
10.
23.11
1703. | 31, | 2, RTIO | 44 W | Man
Man | • •
•• • | W @ ₩ O | | * * * * * * * * * * * * * * * * * * * | 72 - HUUR
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 37. | | DIVERSION
0.
111.
0.
0. | 24
1400
150
150
150
150
150
150
150
150
150
1 | STORAGE II | 20, PLAN | GUTFLOW 23. | 27.
41. | 8 0 1 C 8 | M | | | | # G G G F # | | 000000 | 1461.
1461.
41.
9.83
725.
894. | MAXIMUM STOP | TATION | 15.
396.
791. | 50. |
O & | 13 6
0 4 3 6 | | | 1712.
48.
11.53.
1048. | MAXIMUM STORAGE | | 000000 | 1 5 E A K
5 4 9 • | • | 50 | * * * *
M = - |
चित्रक | 0.5 |
N o ⇔o | 60 | | 0.00
0.00
0.00
0.00
0.00 | | | · · · · · · · · · · · · · · · · · · · | INCHES
INCHES
INCHES
INCHES
ACTIONS CC R | | | ************************************** | 9 | · · | 10.00 | • • | 9 | CPS
CAS
INCHES
AM
AM
THOUS CU M | | | •••••
••••• | | | | 32.1.2 | 1149.
115.
20. | •• | ທິກີທີ່ວ | • • | 475.
0. | | | | 1898
1746
1746
1746 | ww
∞ ∞ w a → o o o a o o o o o o o o o o o o o o | | | ⇔₩4
04000 | |--|---|---
--|---| | | | | | | | 100
100
100
100
100
100
100
100
100
100 | 0
WW W
V4UNU→O OO→OOO | | 487
1739
2625
389
50 | | | | | | | | | N 00 0 | 00 000 0000 0000 0000 0000 0000 0000 0000 | 4 CALUME
11 4 Co
11 4 Co
11 4 Co
11 4 Co
11 Co
1 | 2000
2000
2000
2000
2000
2000
2000
200 | 74.00
4.00
4.00
4.00 | | | | A L | | | | 24
44
40
40
40
40
40
40
40
40 | 0
N40040 00W000 | 201 | 2002
6 2005
6 20 | 10 m | | | | # HOUR
| | | | 53.
623.
2767.
578.
48. | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4 4 8 5 2 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 8 4 4 8 9 4 5 8 9 4 8 9 8 9 8 9 8 9 8 9 9 9 9 9 9 9 9 | M 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | 001710#
32.
381.
748.
57. | 87DR
112.
15.
15.
15.
00.
863. | 24**HOUR 1504. 43. 43. 43. 859 40. 850 85. 8682. | 7
0
3 | 8 - 1 - 6 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 | | Ň | | 8 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 9 7 0 | | | 0.000 0.00
0.000 0.00
0.000 0.00
0.000 0.00
0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.00 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 6=HGUU
2655
171
1317
1625
1625
81ATION S | 7 91.
7 91.
14439.
1310.
130. | 0 0 0 N | | N. | | X * * * | 7427 | | | | | ພິວ ໝໍ
ດ. ວາ
ດ. ນ | | | | | | | 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | - 1.08 W | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | 17.
2364.
1328.
121. | 100
110
277
277
200
000
000 | I NC
POUS O | 700.
3562.
1681.
39. | 94 - 4 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - | | | | | ™ + | | | 45.50
45.50
66.50
1651 | | | 40000
44000
47000
47000 | 0 M O 3 M | | • • • • • • • • • • • • • • • • • • • | | 3000
4000
4000
4000
4000 | ~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | |
---|--------------------------------|--|--|--|--| | | | 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | # * * * * * * * * * * * * * * * * * * * | 2 M M O O O | | | 5000
1000
1000
1000
1000
1000
1000
1000 | | 4886
1245
5341
748
748 | ™
000 ←
000 ← 20 00 ← | 9 8 8 9 0
9 19 9 0
3 10 | VOLUME
90555*
2504*
4.00
101*60
7488*
9236* | | 863.
863.
101AL | • | 1239
6239
974
91 | ₩ W ₩
₩ ₩ ₩ ₩
₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ | 3 * * * * ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° | T01AL | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 90.
N 2, RTIO | # # # # # # # # # # # # # # # # # # # | MWW
WF 60 4 MH | 2 4 3 6 3
0 0 9
8 | 72*HUUR
1509.
43.
4.00
101.60
7488
9236. | | DIVERSIUN
0.00000000000000000000000000000000000 | RAGE = 20, PLAN | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | N - N - N - N - N - N - N - N - N - N - | DIVERSION
0.
863.
0. | 24.
33620
36.
36.
91.
671.
8719. | | 963.
0.
0.
0.
0.
0.
4140.
4140.
27.87.
27.87. | MAXIMUM STORAGE.
STATION 20 | 1187.
7097.
7750.
150. | 03.00
⊶3.000
• • • • • • • • • • • • • • • • • • | 00 M M OO M OO M M OO M M OO M M OO M M OO O | 6-HDUR
6-648.
188.
184.
1.76
1.76
1.76
1.76
1.76
1.76
1.76
1.7 | | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | 0 0 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | PEAK
7215.
204. | | SESSON THOUS OF THOUS OF THOUS OF THE PARTY | | 36.
1050.
5633.
2533.
559.
1 | Series of the se | * • • • • • • • • • • • • • • • • • • • | INCERS INCHES IN | | 0 9 % % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 2000
3000
3000
3000
3000
3000 | | * • • • • •
• • • • • • • • • • • • • • | | MAXIMUM STORAGE & | | ************************************** | | C M M C C C G G G G G G G G G G G G G G | | | 7440
7460
9446
1443
814 | % % % % M N | |-----------|--|--|---|---|------------------------|--|--| | | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | MW MM
MG Q L M M | 6.8.6.6
0.19.000
0.00
0.00 | | | 1581
4788
10473
1236
1628 | W & Q W W W | | | 716
1827
8236
1095
61 | SPENONU SPENON | | 135273-
3831-
5.98
151-77
11185-
13797- | | 1058
31058
17578
1778 | | | 7 | 110
110
110
110
110
110
110
110
110
110 | 0000
7000 | 788.
863.
00. | 040 F W F * * | 80 | 517.
2402.
14524.
1760.
197. | 24 4
0 20 0 4
0 3 4 4 | | N Z, KTID | 1111
1704
1704
1709
1009
1009 | W & H W W H | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 22.7
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5.5
1.5.5
1.5.5
1.5.5
1.5.5
1.5.5
1.5.5
1.5.5
1.5.5
1.5.5
1.5.5
1.5.5
1.5.5
1.5.5
1.5.5
1.5.5 | 220.
2, RTI | 2032.
15981.
1823.
222. | 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 20, PLAN | 001FLOW
99.
451.
9985.
178. | N N N N N N N N N N N N N N N N N N N | DIVERSION
0.0
8643.
689.
0.0
12. | 0 - M 0 0 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0017FLOW
1834.
2556. | 33.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3 | | STATION | 66.
1471.
0811.
2041.
73. | 0000
0000
00000
00000 | 0 98 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 010
010
010
010
010
010
010
010
010
010 | MAXIMUM STC
STATION | 11011
17111
1427
1256 | M W W W W W W W W W W W W W W W W W W W | | | 14150
0070
2683
799 | 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ###################################### | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 1563.
15296.
4375.
116. | 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | 3840.
3852.
3852.
850. | 144
140
140
140
140
140
140
140
140
140 | 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | INCHES OF THOUS CU | | 13648.
13648.
5648. | 2 2 8 | | | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 8 8 8
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | | 78.
1295.
6676.
742. | 28.8.2.2.4.1.3.4.4.3.3.4.4.4.3.4.4.4.4.4.4.4.4.4 | | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | | 0100m30
N90m00
N90m00 | N → N O → N
M N M N | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | |---|--|------------------|------------------|--|---|---|---| | 0 M M O O O O | | | | 1109
6787
14484
1728
112 | ~ # * * * * * * * * * * * * * * * * * * | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | - * * * * * * * * * * * * * * * * * * * | AL VOLUME
202810.
5743.
8,96.
227.54
16770. | | | 14532
17334
17334
17334
1234 | M | 0 M M M O O O O O O O O O O O O O O O O | L VOLUME
2802097
79358
79358
314.38
23170
28579 | | 0 M M M O O O O O O O O O O O | E • • • • | • | . | 700.
3556.
19968.
1965.
266. | W
W 000
24000WW | 0 0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0 | 101A
888** | | • • • • • • • • • • • • • • • • • • • | 78.4HOU
3.4HOU
8.96
8.96
16770
8.66 | 333.
2, RTIO | - | 331
941
373
300
131 | 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | 72+H0UR
152
128-38
314-5
23170
28579- | | 01 VERSION 8663. | 24-HOUR
771118
218.
8-17
207.62
16875. | 0. 0 | 1035.
GUTFLOW | 199.
789.
833.
775.
257. | 870R
456.
457.
75. | 01VERSION
00.
865.
865.
00. | 24+HDUR
10733.
1304.
21300.
26273. | | 0 M M M O O O O O O O O O O O O O O O O | 15410UR
15410UR
1436.
103.73
7445. | AXIMUM
TATION | 862.5 | 136.
2621.
2485.
27885.
2944.
441.
37. | 1000 0 M | 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 6-HUUR 24
21168. 1
599. 5
5.61
142.49
10502. 2
12954. 2 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 165EP
4 20 4 7 1 | | | 1112.
423.
014.
528.
157. | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | - • • • • • • • • • • • • • • • • • • • | PEAK
22833.
647. | | | CFS
CMS
INCHES
MM
AM
HOUS CU H | | | 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | ง จ. • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • | INC CARS | | *****
******************************** | 9 9 19 19 19 19 19 19 19 19 19 19 19 19 19 | | | 182
187
75
1 | 3 X X | | 1
7
4
8
7
8
7
8
8
8
8
8
8
8
8
8
8
8
8
8
8 | | 0 # #
2 # #
0 # # # 0 0 | | | | 1943
1943
19597
9343
1012 | 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | .. ``` ILPR 0 AANCST 0.00000 ADSCNT 0.00000 EXPECTED ANNUAL FLOOD DAMAGE COMPUTATION NOMG ISAME TRGT DGPRT IAGST AC NO ADJUSTMENT OF AVERAGE ANNUAL DAMAGES FOR THIS DATA PLAN 2 NFLOD FLOOD DAMAGES FUR STATION 2030 NO. FLOW FREG INT SUM 1 140. 6.000 284 0.00 2 1115. 5.402 1.752 2.86 4 2080. 1.769 1.072 4.28 5 3507. 867 7.76 6.06 6 5756. 323 391 5.48 7 9253. 005 014 .65 STATION 2030 FLOUD DAMAGES FOR STATION 2030 19TA EXCD PROB 9411 6.00 .284 1139. 5.462 1.752 1940. 3.097 1.775 4 2921. 1.769 1.072 4 4312. 867 7.95 6 6699. 323 391 101691. 095 136 8 15177. 0020 037 AVG ANN DMG BFT FREQ PRAY FUR PRAY PREQ PREAK PREQ 1030. AVG ANN ``` | | กเก | | | | | | | | | |------------------|---|---|-----------------------|------------|--|----------------------|--|-------------|--| | IAUTO | | ** | IAUTO 0 | | | | | | | | ISTAGE
0 | 44
44
40
80
40 | * | ISTAGE
0 | | | | | | | | | MA
WWW
WWW
WWW
WWW | | | | 405CLW
405CRW
1147.
19.78
3351.
4133. | | 1377*
1377*
1377*
23.88
4021* | | # • • • • • • • • • • • • • • • • • • • | | INAME | A P E | #
#
| INAM | | 4 | · · · _· · | <i>></i> 3 | 141 | AL VOLUME
81034.
2295.
1.57
39.79
6700. | | JPRT | 7803
388
503
503
35 | · · · · · · · · · · · · · · · · · · · | F 0 | RTIO | 101 | RTIO | TOTAL | RTIO | 101AL | | JPL T | PHS READ
1 7
7 6
423.
64. | Σ.
Σ. | JPLT | PLAN | 72 + HOUR
475 - 176
19 *
90
3351 - 4153 | PLAN 1 | 72 #HGUR
8 8 23 * 94
23 * 894
4021 * 4960 * | PLAN | 72°HDUR
1351°
38°
1°57
39°79
6700°
8265° | | ITAPE | HYDROGRA
11, RATIO
10.
13.
33. | ************************************** | | T 30 | 24+HQUR
1433-
16-89
2844-
3508- | r 30 | 24 HUUR
1713 4
20 49 8
20 19 4
419 419 4 | T 30 | 24=HQUR
2851:
81:
33:
55:60
5658: | | POOL
IECON | NERATE PLANT | ***
COMBINE | BAY POOL
IECON | ∢ . | 6+HGUR
21:71
61:71
60:30
1060
1308 | RAPHS AT | 2571.
73.
73.
757.
757.
1275. | ⋖. | 4375°
124°
124°
128°
12°89
2171° | | FOREBAY
ICOMP | 13LY GE 3. 450. 104. 3. | *************************************** | TO FOREBA ICOMP 3 | нуряшскарн | | HYDROGRAPHS | | HYDROGRAPHS | | | INFLOW TO F | PREVIOUSL
64.
413.
129.
10. | *** | | M 0F 3 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | M OF 3 | 2676 X 746 | 4 OF 3 | 0.00
0.00
0.00
0.00
0.00 | | LOCAL INFL | 0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0. | | COMBINED INFLOW ISTAG | SUM | INCHES
INCHES
ANCHES
ANCHES
ANCHES
ANCHES
ANCHES
ANCHES | ₩
N
N | CPS
CMS
CMS
INCHES
MM
AC-FT | SUM | CFS
CRS
INCHES
MA
AC-FT | | | | * * | | | | | | | | | | ល្ខៈ ។ ។ ។ ។ ។ ។ ។ ។ ។ ។ ។ ។ ។ ។ ។ ។ ។ ។ ។ | * | | | | | | | | | | 00 | | 00 |--|---|---------------------------------|--------------------|---------|-------|----------|------|-------|-------------|------------------------|------|----------|-------------------|-------------|------|------|--------|------------|--------|--------|--------|-----|---|---|----------|-------|--------------|-------------|---|-------------|--| | | • • | | • • | | | 58. | 381 | 1200 | 0 0 | 287. | • | 170 | 514 | 554 | 232 | •96 | | " 0 | • | • • | • | | | | | | | | | | | | LSTR | * *
0 | | 10000.
8670. | | | ¢ 0.17 | 321 | 1200 | 7 C | 315 | | 107 | 080 | 575. | 255 | 105 | | 0 | 0 | •
• | •
• | • • | | | | | | | | | | | IDVR
0
STORA | • | | | | | 27, | 280 | 0 | 2 C | 344 | • | | 443 | 592 | 282 | 115. | | • | 0 | • | • 0 | | Š | 7070 | 1087 | - | 18,85 | - 5 | | | | | 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | PDSCNT
0.05040 | 9000 | | | 19. | 247. | 1200. | 0020 | 374 | | • n | 400 | 6 02 | 311. | 125 | | 0 | 0 | • | • | • • | 5 | .i | | | | | | | | | F401
0 X 000*0 | 60 | DATA
T PANCST
• 02300 | 000 | | | 16. | | | | 407 | | • • | | 0.7 | 45. | 36. | | 0 | • | • | • | • • | | X C 2 4 | | .74 | 18.85 | 5016 | | 607. | | | NO RE LES ON RE | 00 | NG PLANT EN PWRCST | 2300 | S, PLAN | 30 to | | | - | | - | STOR | • | | 7 | | | GNTGWO | | •0 | • • | • | • • | | 7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 33, | 53 | | 0 V C | , | GE # | | | PLAN 2
ROUTING DV
IRES ISAME
1 1 SAME
LAG AMSK | • | PUMPING
MN PMPUN
0. 1500. | .000 | ION 30 | č | . | 801 | 0 | ~ י~ | * 7 7 7 7
* 7 7 7 7 | | | ,
, | 1.0 | 3.8 | 14 | ā | | | | | | | HOOK. | | 71. | 30 E | 440 | | IUM STORAGE | | | AVG
0.00
NSTDL
0 | | G. | | STATIC | | 2 | 6 | 3.1 | 000 | 484 | | ທີ່ | | 000 | 424 | 161. | | 0 | •
• | •
• | ċ | | | . | | | | | | MAXIMUM | | | CLUSS
0.000
NSTPS | 100000 | # 0000 | 70. | | | 10. | 131. | 697. | 1200 | 526 | | ឃុំ | 0
1
1
1 | 586 | 462 | 176. | | 0 | • | • | • | • • | | • | - | | . | 2 | = | | | | 0°0
0°0 | 1200 | | 67. | | | 14. | 105 | 574. | .002
200 | 578. | | ់ | | 268. | 497. | 193. | | 0 | | • | • | • • | | | ນ ຄ. | INCHE | -2 -1 | ALCIN ALCIN | 3 | | | | | 00 | | ••• | | | | • • | | | _ | | ທໍາ | • | | · a | | | 0 | .0 | • | | • • | | | | | | | | | | | | STORAGE | | CAPACITY#
COST# | | | | | 917 | 120 | 1200 | | | ~ <u>u</u> | 563 | 25 | 211 | | | | | | | | | | | | | | | | | |
1122000
1222000
1222000
1222000
1222000
1222000
1222000
1222000
1222000
1222000
1222000
1222000
1222000
1222000
1222000
1222000
1222000
1222000
1222000
1222000
1222000
122200
122200
122200
122200
122200
122200
122200
122200
122200
122200
122200
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12220
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
1000
1000
10000
1000
10000
10000
10000
10000
10000
10000
1000 | 000000
00000
00000
00000
00000
00000 | | 112000
12000
12000
12000
12000
12000 | NW4W
NW4W
NW64000
NW640000
NW660000000000000000000000000000000 | |------------|--|---
--|--|--| | | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | 000000 0 | 20134
27623
40126
392126 | | | 1120007
1120007
111111111111111111111111 | | AL VOLUME
623.66
1766.
1.21
5315.62
63157. | 44711111111111111111111111111111111111 | 1591.
17260.
37084.
40146. | | RIIO 8 | 2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 000000
00000
00000
00000
00000 | 2008
200
200
201
201
201
201
201
201
201
201 | A | 1298.
14395.
26071.
40137. | | PLAN 2, RY | R 25645. | ING
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PARSO
PA | -HGUR 72-H
34.
34.
14.14.
556.
14.14.
5381.
2937.
8 25851. | MR COST 7 280. 120 | 1063
11666
140093
40093 | | 1 305, |
0UTFL
1910
1200
1200
1200
1200
1200
1200
1200 | 000000
000000
000000000000000000000000 | 0008
34.
• 114
• 114
• 114
34.
8 TORAGE | AP CUST
2531.
255.
1200.
1200.
1200.
1200. | 9198.
33524.
40004.
39685. | | STATION | 184
1200
1200
1200
1200
1200
1200
1200
120 | 00000000000000000000000000000000000000 | PEAK 6**H 2000** 34** 34** 354 | 00 000000 M
Z • Mc0000 M | 70508
318928
897858 | | | 112000.
112000.
12000.
12000.
12000.
12000.
12000.
12000.
12000.
12000.
12000.
12000. | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1200.
1200.
1200.
1200. | 5312.
30009.
39645.
39645. | | | 1986
1780
1780
1780
1200
1200
1787
1862
2550
2550
2550 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | THOUS O | 400000 | 39958 | | | 112200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12200
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | PH 1917028
PH 2069869
R246
1073
1200
1200
1200 | 22.25.25.25.25.25.25.25.25.25.25.25.25.2 | | | ç | 2250 | 0000 | 2000 | | 2250 | | | |--------|--------|------|------|--|-------|-------|--|--| | | , | 2250 | 7780 | 0500 | 20.50 | 2250 | | | | | 0 | G | 2250 | 2250 | 7250 | 2250 | VOLU
18646
18026
18026
18026
1803
64963 | | | | • | 0 | 2250 | 2250 | 2250 | 2250 | 2-HUUR
10-10-10-10-10-10-10-10-10-10-10-10-10-1 | | | (J) | | | | | • | 2250 | 14.HGUR 72=H
1200.
34.
14.14.
14.14.
2381.
2381.
2937.
644. | | | LOED C | • 0 | 0 | 2250 | 2250 | 2250 | 2250 | 1200.
1200.
34.
34.
3.14
3.54
595.
734.
0.00 STORAGE = | | | | • | 0 | 2250 | 2250. | 2250 | 2250. |
2200.
12300.
34.
34.
33.
33.
33.
34.
34.
34.
34.
34 | | | | •
• | • | 2250 | 2250. | 2250. | 2250. | | | | | 0 | 5 | 2250 | 2250 | 2250 | 2250. | TADUCA SASSAS AT THOUS CONTAINS SASSAS AT THOUS CONTAINS AT THE CONTAINS AT THOUS CONTAINS AT THOUS | | | | •
• | | .050 | 0 0 0
0 0 0
0 0 0
0 0 0
0 0 0 0
0 0 0
0 0 0
0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 | 4620 | 2250. | | | | | ST | 14.
14. | CTE | 7,4 | ٠. ۵ | TION | AANCST | | |---------------------------|---------------|----------------|---|--------|-------|---------|---------|---| | | 0.00 | 10 | Λŧ | 1 | 0 000 | 0000000 | 0000000 | 0 | | DATA | STATIC | 305 | - | | | | | | | | | ± × ± | | | | | | | | .700 1500. | 10.0 | | 0.000 | | | | | | | | | 27.500 | 10.500 | | | | | | | | | | 13,000 | | | | | | | 0007 | 000 3352 | | 200.00 | | | | | | | | | | 0000 | | | | | | | | 000 000 | | 000.000 | | | | | | | | ` | | 200,000 | | | | | | | | _ | | 000 000 | | | | | | | | 11835,000 | 11250,000 | 585,000 | | | | | | | MA AC TROPHER OF ANY DACE | * 30 Y G 40 Y | | 0 | **** | | | | | | | 4 | | יים
מיים | 1 | | | | | | FLOUD DAMAGES FUR STATION | STATION | 305 PIAN | | | | | | | | | PRUB | | | | | | | | | STOR | - Z | HADE MIS | - | TYPE 3 | | | | | | 1035700 | 0.00 | - | ٠. | 0.00 | | | | | | 1486. 700 | 257 | | . n | 77 | | | | | | 3587 | | | 18,50 | 2.69 | | | | | | 5904 | | - | 107,26 | ນູ້ນ1 | | | | | | 1556 | | | 231,56 | 8.58 | | | | | | 15876. | .075 3 | 311,36 300 | 300,95 | 0.41 | | | | | | • | | | 223,56 | 90.6 | | | | | | 38600 | | 110,98 106 | 106,13 | 28. | | | | | | 9 53875004 | | | 75,28 | 3.85 | | | | | | AVG ANN DMG | | 1110.21 1064.8 | | 45.40 | • | | | | | | | - 5+
 | ı | | | | | | | TELLING DAMAGES FOR | 201-4-00 | 505 FLAN | v | | | | | | | 0013 | 0 F | 7024 | | e 25>+ | | | | | | | 000 | - | | 7 L | | | | | | 28.00 | , | | 00.0 | 00.0 | | | | | | in
in | 6.07 | | 2 | 60 | | | | | | 1596. | .150 | 1.80 | 1.40 | 40 | | | | | | 2659 | | | 5,36 | 1.28 | | | | | | 5655. | | | 58,15 | 2,84 | | | | | | 13353. | - | | | 4,24 | | | | | | 25851. | | 82,30 79 | 80.6 | 3.23 | | | | | | 9 40146004 | .008 | 57.39 64 | 80 TT | 2,91 | | | | | | AVG ANN | 9#4 | 345,87 330 | 330,89 | 86.1 | | | | | | * | • | | | | | | | | | AVE ANN | 8F T | 764.34 733 | 733.92 | 30,42 | | | | | PEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIU ECONOMIC CUMPUTATIONS FLOW IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND) AREA IN SQUARE MILES (SQUARE KILDMETERS) | OPERATION | STATION | AREA | PLAN | RATIO 1 | RATIO 2 | RATIOS APE
RATIO 3 | PPLIED TO FL | OWS
RATIO 5 | RATIO 6
1.50 | RAT10 7 | RATIO 8
3,25 | RATIO 9 | |---------------|------------|------------------|----------------|--|---|--|---|--|---|--|---|--| | HYDROGRAPH AT | 01 | 35.10 | ,- | 1343.
38,02)(
1343.
38,02)(| 16111
45,62)(
16111, | 2685.
76.03)(
2685.
76.03)(| 3759.
106.44)(
3759.
106.44)(| 5370,
152,06)(
5370,
152,06)(| 8055,
228,09)(
8055,
228,09)(| 11814.
334.54)(
11814.
334.54)(| 17453.
494.20)(
17453. | 669
669
669
669
669 | | ROUTED TO | 110 | 35*10
90.91) | → ~ ~ ~ | 1343.
38.02)(
586.
16.65)(| 1611.
45.62)(
666.
18.86)(| 2685,
76,03)(
909,
25,73)(| 3759.
106,443(
1085,
30,723(| 5370.
152.06)(
1324.
37.48)(| 8055,
228,09)(
1758,
49,78)(| 2 2 2 4
2 3 5 4
2 4 5 4 5 | 9 4 0 0 M | M 60 00 00 00 00 00 00 00 00 00 00 00 00 | | ROUTED TO | 1030 | 35.10
90.91) | - ~ | 941.
26.65)(
525.
14.86)(| 1139.
32,24)(
594.
16,83)(| 1940.
54.94)(
838.
23.73)(| 2921
82,713(
1005,
28,473(| 4312.
122.103(
1252.
35.463(| 6699.
189.70)(
1583.
44,83)(| . 50
50
50
50
50
50 | 15177
29.77
10185 | 85 W W W W W W W W W W W W W W W W W W W | | HYDROGRAPH AT | 50 | 35,10
90,91) | | 1343.
38.02)(
1343.
38.02)(| 1611.
45.62)(
1011.
45.62)(| 2685.
76.03)(
2685.
76.03)(| 3759.
106,443(
3759.
106,443(| 5370.
152.06)(
5370.
152.06)(| 8055.
228.09)(
8055.
228.09) | 11814,
334,54)(
11814,
334,54)(| 17453
494.201
17453
494.201 | NONO | | ROUTED TO | 5 0 | 35.10
90.911 | `\ \\ | 1343.
38.02)(
1346.
38.12)(| 1611.
45.62)(
1549.
43.86)(| 2685.
76.03)(
1830.
51.82)(| 3759.
106.44)(
2903.
82.20)(| 5370.
152.063(
4524.
128.12)(| 8055.
228.09)(
7215.
204,32)(| 11814.
334.54)(
10985.
311.07)(| | 23628.
669.07)
22833.
646.57) | | ROUTED TO |)
0808 | 35.10
90.91) | N | 941.
26.65)(
940.
26.61)(| 1139.
32.24)(
1115.
31.56)(| 1940.
54.94)(
1430.
40.49)(| 2921.
82.711(
2080.
58.901(| 4312.
122.10)(
3507.
99.31)(| 6699.
189.70)(
5756. | 10191
288,58)(
9253,
262,02)(| 15177.
429.77)(
14254.
403.64)(| 20603.
583,423
19694. | | HYDRUGRAPH AT | 30 | 10.00 | _ ~~ | 453,
12,61)(
453,
12,81)(| 543,
15,38)(
543,
15,38)(| 905
25,63)(
905,
25,63)(| 1267.
35.88)(
1267.
35.88)(| 1810.
51.25)(
1810.
51.25)(| 2715.
76.88)(
2715.
76.88)(| 8 - 8 - | _ a0 • a0 • | 24.55
24.55
34.55
35.55 | | 3 COMBINED | e
R | 80.20
207.72) | - N | 2219.
62.84)(
1660.
46.99)(| 2676.
75.79)(
1939.
54.90)(| 4563,
129,21)(
2602,
73,67)(| 6859;
194,23)(
3752;
106,25)(| 10154.
287.53)(
5793. | 15693,
444,39)(
8998,
254,81)(| 23748.
672.47)(
14293.
404.74)(| 35345,
1000,80)(
25799,
730,54)(| 48011.
1359.53)
38535.
1091.19) | | ROUTED TO | 302 | 80.20 | 7 7 | 1200.
33.98)(
1200.
33.98)(| 1200.
33,98)(
1200.
33,98)(| 1200.
33.98)(
1200.
33,98)(| 1200.
33,98)(
1200.
33,98)(| 1200.
33.98)(
1200.
33.98)(| 1200.
33,98)(
1200.
33,98)(| 1200.
33.98)(
33.98)(| 1200°
33.98)(
33.98)(| 1200.
33,983
1200.
33,983 | | | | | * " | PEAK STORA
1036.
1278.)(
749.)(| GES IN ACR
1486.
1833.)(
1088. | E FEET (10
3587,
4424,)(
1552,
1914,)(| 00 CUBIC ME
5904,
7283,1
1596,
1968,1 | 11788.)(
3280.)(
3280.)(| 15876.
19583.)(
5655.
6975.](| 24937.
30760.)(
13353.
16471.)(| 38699.
47734.)(
25851.
31887.)(| 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | VAR 1
6620. | VAR 2 | VAR 3 | SYSTE
VAR 4 | SYSTEM OPTIMIZATION RESULTS
VAR 4 VAR 5 VAR 6
0. 0. 0. | ZAT10N
5 | RESULT: | 5 010 7 665. | 8 ^10 | | 2250 • | PMP 10 | 0,0 | |----------------|---------|---|----------------|--|-------------|----------|--------------------|--------|-------|--------|--------|-----| | | | CUNITS | SYSTEM (| SYSTEM COST AND PERFORMANCE SUMMARY (UNITS SAME AS INPUT - NORMALLY 1000'S OF DOLLARS) | PERFOR | MANCE SI | UMMARY
S OF DOL | LARS) | | | | | | TOTAL SY | STEM CA | TOTAL SYSTEM CAPITAL COST * * * | * * * | * * * | * | * | 7099. | | | | | | | TOTAL SYS | STEM AM | SYSTEM AMORTIZED CAPITAL COST * * * | ITAL COST | * * * * | * * | * | 358 | | | | | | | TUTAL SY | STEM AN | TOTAL SYSTEM ANNUAL DOM, POWER AND REPLACEMENT COST | WER AND F | REPLACEME | NI COS | * | 248 | : | | | | | | TOTAL SY | STEM AN | TOTAL SYSTEM ANNUAL COST | * * * | ** * * * * * * * * | * | * | | 509 | AVERAGE | ANNUAL | AVERAGE ANNUAL DAMAGES EXISTING CONDITIONS | EXISTING | CONDITIO | * * 5NC | * | 1177. | | | | | | | AVERAGE | ANNUAL | AVERAGE ANNUAL DAMAGES OPTIMIZED SYSTEM | OPTIMIZE | D SYSTEM | * | * | 375 | -
- | | | | | | AVERAGE | ANNUAL | AVERAGE ANNUAL DAMAGE REDUCTION (BENEFITS) | CTION (BE | ENEF 1 TS) | * | * | | 808 | N. | | | | | | | | | | | | | | | | | | | AVERAGE | ANNUAL | AVERAGE ANNUAL SYSTEM NET BENEFITS | BENEFITS | * * * | * * | * | | 61 | . 161 | ***** OPTIMIZATION OBJECTIVE . MAXIMIZE SYSTEM NET BENEFITS **** | · | |-----------------| | NTBNET
113. | | 18NFTS
546. | | ANDMG
632. | | ANDGBS
1177. | | TANCST
433. | | ANDMPR
201. | | ANECST
232. | | 1FCST
4600. | | | ## EXHIBIT 6 SIZING LEVEE AND CHANNEL MODIFICATION (Unconstrained) | | | | | | | | TEGEND | N = NEW INPILE DATA | R = REVISED INPUT DATA | O= REVISED INPUT DATA |---------------|-----------------|----------|----------------|------|-------------------|-----------------|--------|---------------------|------------------------|-----------------------|-----------------|-------|---------------------|-------------|----------|------------|--------|-------|----------------------|------|-------------|----------|-------------|-------|---|----------------|-----|--------------| | | | | 500 | 3000 | 280 |)
(4)
(4) | 6 | | | | @ _{\$} | | 0070 | | 7.0 | | | | | 6480 | | U | 4.08 | 10.63 | | • | • | | | • | •
• | |
 | 1920 | 2 4 | 31 | Ĉ. | | | | 'n | - 4 | > X | • | 0,4 | | • | | | 5620 | | | 3,53 | 8.91 | | • | • | | | |
5 | | 175 | 1290 | 540C | 20.0 | • | | | | > | 0000 |
2
20
5 | ٠, | بر
در | | 9°. | | | 4800 | #
\$ | • | 2,73 | 7,23 | | • | • | • | | | 2.20 | | 0 6 1 | 1040 | 2 S
2 S
2 S | 900 |)
U | | 6300 | 24000 | 6. | 9869 | 3 | • | 6.9 | t. | n
o | | | 4220 | 73 | <u>.</u> | 2,53 | 5,85 | | • | • | - | | | | | 85 | 910 | 775 | 96 | | I | 3080 | 10250 | | \$005 | 21000 | | N. | | 30.5 | | 4500
340 | 3200 | 21000
25 | 1,76 | 1.73 | 37.8 | M | - 66
• | | • | | | 1,00 | | 20 | 840 | 5 6 6
6 6 | , C2 | | TION REACH | 24.35 | 6100 | IC. | N 0 | 15100 | | | 0°5 | 27.0 | | | | | | و
د
د | 1.13 | 27,00 | > ₹
• | 0 § | * O | | | 0.70 | R INFLOW | 33 | 008 | 1250 | 82 | | MODIFICATION | 076 | 2059 | ∋)v.
• | 17.05 | 12100 | ~ .~ | | ₩.
0. | 53.0 | 40504 | > ~!
> ~!
> ~! | 1740 | 00121 | 1 · 1 · | 0 0
0 | | 50.55 | .42 | | • | | ,
Ogv | 00.50
-2000 | RESERVOI | 25. | 760 | 1540 | 120
35 | | CHANNEL | 475 | 1020 | າ
ຈີ | 1380 | 10000 | ••• | S. | 0°9- | 16.0 | 023 | 149 | 1380 | 0000 | 76. | 7.70 | | : ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° | | 017 | • | | JNCUNSTRAINED | 0.000
0.30 | OTENTIAL | ~ | 720 | • | 160
36 | 1030 | Ten IAL | L. | 200 | | 72 | -33 | ÷ • | ruin. | 40
40 | | 00 | 30 | M S | , | ~
• | , e | | 90 6 0 | , 1 | ۰ ۲ | . €5, | | 1000000 | 0 ~ 15
0 ~ 2 | o - | - 2 | 500 | 2200 | 2.
2. 03. | _ : | 2 | | 0201 | • | N M | 3 | 00 | 1117 | ຫ ຸ | 10 | 1700 | 3 | 1030 | | 69. | J. 0.1 | | | , o | 00 | • | | | | | | | | | | | | | | | | CEGEND | N = NEW INPUT DATA | R = REVISED INPUT DATA | - DEVICED INDUT | - REVISED INPU | | | | | | | | | | | | | | | | | | NI Q | EALIVE
AND
TOEAN | | |--------------|------------|---------|--------------|----------|-------------|---|---------|-------|---|-------------|--------|------|-------|--------|--------------------|------------------------|-----------------|----------------|----------|-------------|------------|-----------|----|-------------|---------|------|-----------------------|--------------|---------------|---|-----------|----------------|---|-----|--------|--------------|---|----------| | 3000 | 2720 | 280 | | Ç | | | | | (| <u>ښ</u> رو | • | 6480 | | 7,91 | | | | 6480 | | 16.4 | | 70.0 | | | y 0 - | 1000 | 006 | 5 | 30 | • | | | | | | 1 305 OMITTE | UNDER 10 COMPARE THE RELATIVE EFFECTS OF THE CHANNEL AND FEVEF IN DEPILITING POLINICEDEAN | | | 515 | 3330 | 365 | 3 (| • | | 9 | | | | ď | | 5620 | | 6.2 | | | | 5620 | 1.1 | 13.9 | | 2 | | | • 140 | 4 | 1110 | 120 | <u>.</u> | | | | | | | DAMAGE REACH | FFECTS OF 1 | MAMAGES. | | 375 | 3980 | 470 | M 1 | , | | | | | | ŀ | | 4800 | | 11.8 | | | | 4800 | | ⊕ • | | 0

 | | | 2.5 | 430 | 1330 | 155 | 20 | | | | | | | NOTE: | | | | 190 | 0097 | 605 | 7 0
0 0 |) •
U | | | 7 | 0000 | 70753 | 0 | | 4220 | | 8 | | | | 4220 | | 80° | | • | | | ۶9 | 350 | 1530 | 002 | 32 | - | | • | | | | | | | | 910 | 2100 | 775 | 0 6 | > | | | | 00000 | > 1 3 5 4 5 4 5 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 | 5 | .005 | 3200 | 21000 | 7,2 | | C P | 0.00 | 3200 | 21000 | 2.5 | • • • • | 50.1 | | | 80
N | 305 | 0.00 | ν
γ
γ | ¥ 2 | | | | | | | | | | | 50
840 | 5370 | 565 | : \$ | | ISS REACH | 7 | • | 000 |)
) | 2.5 | - 05 | 2280 | 15100 | 5.0 | | 6 E E | 28.0 | 2280 | 15100 | | 3 (
3) | - M. | | • | 1 | 280 | 019 | 950 |) | | 200 | L. | _ | | | | | | | 33 | 5360 | 1250 | ? ; ; | | AND/OR BYPA | | | 7000 | χ≘
} |)u
m | | 1740 | 12100 | >. | | 4000 | 222 | 1740 | 12100 | ⇒ પ
જ દૃ | n = | 34,5 | | UNE TAN TOU | - | 592 | 000 | <u>,</u> |)
} | | FOREBAY | JOH LEVEE | | | | | | | | 900
N. Z. | 0.80 | 0 ° ° ° | > 15
3 PM | | LEVEE AND | | 7.4 | 0.00 |) | | 01. | 1380 | 00001 | 1.6 | e.
• : | - L | 671 | 1380 | 10000 | 0 T 0 | > 4
• • | | | 10.01 | • | 552 | 1020 | 0 - 7
- 7 | | | NF.COM TO | OUTLET THROUGH | | | 100001 | | | | | 710 | O : | 3 C | , ••• | 3 | OTENTIAL | | ğ | 200 | . 10 | 3,5 | · ! \$ | 200 | n i | | 23.1 | | - | 1130 | . | 0 T | • | 23.1 | 90 |]
L
J | 60 | 0 S |)
1
1
1
1 | 25. | 2 | 9 | 3 K | AVITY OU | | ~57 | 1200 | | | | | 200 | 6 (| - C | . 3 | | 2 | | | > 0 | 2030 | | | 1030 | ^ | | N 6 | 2 | = | 1030 | 7 | 20.3 | | 20.3 | | | 12.4 | 2 5 | 40 | • | M | | 3 | 3 | | (| > 0 | \$ | | | VIROL SYSTEM COMPONENT OPTIMIZATION VEE AND CHANNEL MODIFICATION INED JOB SPECIFICATION NHR NMIN IDAY JHR IMIN METRC IPLT IPRT NSTAN FLOOD CONTROL SYSTEM COMPONENT OPTIMIZATION SIZING LEVEE AND CHANNEL MODIFICATION UNCONSTRAINED | | 7.6 | E ZIWZ GZ | IDAY THR IMIN METRO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | IMIN METRC
0 0
ROPT TRACE
0 0 | RACE O | | 20 | | | | |---------------------------------------|------------|---------------------------------|---|--|--|---------|------------------|---|-------------------|-----------| | | E SO | MULTI÷FLAN
NPLAN:
230 .50 | ANALVSES
NATIO | 10 BE | PERFURMED
10m 1
1.50 2.20 | M
M | 0 | | | | | W W W W W W W W W W W W W W W W W W W | * VAR V S | VAR 3 VAR 3 | 4. | OPTIM
S | SYSTEM OPTIMIZATION
VAR 5 VAR 6
0. | 7 0 | 0 IV 8 | 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · | • • • | | | | | | FIXED COST
0. 0.0000 | COST INPUT | NPUT
0.00000 | | | | | | | | | | SZ - | E N | VARCM) | VARCH13 | 083 DEV | TANCST
6,980 | ANDMG (52,791 | O FTN(NC) | | | | | U N | ΣN | VAR(M) | VAR(M1) | 08J DEV | TANCST
6,953 | ANDMG (| .599E+02 | | | | | SW
Z | I U | VAR(M) | VAR(M1) | 08J DEV | TANCST
6,925 | ANDHG C | FINCHC) | | DBJECTIVE FUNCTION FOR VARIABLE | TABLE 2 | \$9776+02 | .5992E+0 | N | *6009E+02 | | | | | | | VAR 2 ADJ FROM ZOGE | 2000.00 TO | 2104.43 | t) •4
Z | ΣM | VAR(H) . 200E+04 | VAR(M1) | 08J DEV
0,000 | TANCOT
1 141 | ANDHG C
51,766 | G FTN(NC) | | | | | U N | E M | VAR(M) | VARCM13 | 083 DEV | 7.094 | ANDHG (51.766 | . 589E+02 | | | | | OM
Z | ¥N
∑M | VAR(M) | VAR(M1) | 08J DEV | TANCST
7,067 | SI. 9:12 | SPOE+02 | | OBJECTIVE FUNCTION FOR VARIABLE | (ABLE 3 | . 58896+02 | .5886E+02 | 0. | .5898E+02 | | | | | | | VAR 3 ADJ FROM | 2000,00 10 | 1986,30 | 2 - | E N | VAR(M) .210E+04 | VAR(M1) | OBJ DEV | TANCST
7.103 | 51.766 | . 589E+02 | | | | | UN
Z | ΣN | VAR(M) | VAR(M1) | OBJ DEV | TANCST
7.074 | ANDMG 0 | . 590E+02 | | | | | S.W. | I N | VAR(H) | VAR(M1) | 084 DEV | TANCST
7.046 | ANDHG D | .592E+02 | | OBJECTIVE FUNCTION FOR VARIABLE | ABLE 2 | .5887E+02 | .59058+02 | | *5922E+02 | | | | | | | | | | E M | VAR(M) | VAR(M1) | 58J DEV | A NO SECTION OF SECTIO | ANDHG (| 0 FTN(NC) | |---------------------------------|----------------|------------|--|----------------|-----------|---------------------------------------|--
---|-------------| | VAR 2 ADJ FROM | 2104.43 TO | 3156,65 | | | | • | • | | | | | | | EM | VARCM) | VAR(M1) | 08J DEV | #ANC81 | ANDMG C | 0 FIN(NC) | | | | | E W | VAR(M) | VAR(M1) | 084 DEV | TANCST | ANOMG C | 0 FIN(NC) | | OBJECTIVE FUNCTION FOR VARIABLE | FOR VARIABLE S | . 5250E+02 | *5262E+02 | , 5273E+02 | | | | | | | VAR 3 ADJ FROM | 1986.30 TO | 2979.44 | EN
CA | VAR(M) | VARCM13 | 0.000 | 7ANCST
9.878 | 37.259 | 0 FIN(NC) | | | | | NO N | VARCM) | VAR(M1) | 08J DEV | TANCST
9,835 | 37.416 | 0 FTN(NC) | | | | | E OU | VARCH) | VAR(M1) | 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | TANCST
9.792 | 37,596 | SOTATIONS. | | OBJECTIVE FUNCTION FOR VARIABLE | FOR VARIABLE 2 | .4712E+02 | .4725E+02 | .4739E+02 | | | | | | | VAR 2 ADS FROM | 3156,63 10 | 4734,97 | E M | VAR(M) | VARCM13 | 08J DEV
0.000 | 1ANCST | 30,881 | 429E+02 | | | | | N W W | VARCM) | VAR(M1) | V30 L80 | TANCST | SI . OUT | # TN(NC) | | | | | Z X X X X X X X X X X X X X X X X X X X | VAR(M) | VAR(M1) | 08J 0EV | TANCST | SI.211 | - FINCNES | | OBJECTIVE FUNCTION FOR VARIABLE | FOR VARIABLE 3 | 42905+02 | .4303E+02 | .4315E+02 | | | | | | | VAR \$ ADJ FROM | 2979•44 TO | 4469.17 | EM
EN
OH
Z | VAREM) 473E+04 | VAR(M1) | 000°0 | 14.041 | ANDHG
23.604 | . S76E+02 | | | | | N N N N N N N N N N N N N N N N N N N | VAR(M) | VARCM1) | OBJ DEV | 14NCS1 | ANDMG L | # FTN(NC) | | | | | N N N N N N N N N N N N N N N N N N N | VARCH) | VAR(M1) | 08J DEV | TANDON TO SOLV | ANDMG
23.885 | TTN(NC) | | OBJECTIVE FUNCTION FOR | FOR VARIABLE 2 | .3764E+02 | .3772E+02 | *3780E+02 | | | | | | | | | | N N N N N N N N N N N N N N N N N N N | VAR(M) | . 701E+04 | 083 DEV | 1ANCST
23.176 | 19.277 | 0 FIN(NC) | | | | | E S C C C C C C C C C C C C C C C C C C | VARCA) | VARCHI) | 08J DEV
0.000 | 14NCST | ANDMG (21.880 | 391E+02 | | VAR 2 ADJ FROM | 4734,97.10 | 4939,90 | ≠N
EM
U→
Z | VAR(M) | VAR(M1) | 087 DEV | TANCST
14,319 | N S O S N S N | # FTN(NC) | | | | | EM
LM
UN | VAH(M) | VAR(M1) | 000°0 | 1 *NCS1 | Z3,247 | * MISE + OR | | | | | E M | VARCH) | VAR(M1) | 000 000 | TANCST
14.197 | 23.438 | . FTN(NC) | | OBJECTIVE FUNCTION FOR VARIABLE | FOR VARIABLE 3 | .3737E+02 | .37516+02 | .3764E+02 | | | | | | | | | | ž - | EN | VAR(K) | VARCHI) | 08J DEV | 74NC97 | ANDHG
16.449 | 0 FIN(NC) | |---|----------------|---------------------------------------|---|-------------|---------------------------------------|--|---|---|--|-----------| | VAR & ADJ FROM | 4469,17 TO | 5139,54 | 2 | EM
EN | VAR(M)
*494E+04 | VAR(M1) | 083 DEV | 15.081 | ANDMG
20,683 | 367£+02 | | | | | 2 - | I M | VAR(M) .514E+04 | VAR(H1) | 090 DEV | 18.981 | ANDMG
20.683 | .367E+02 | | | | | UN. | EM
EM | VARCM) | VAR(M1) | 083 DEV
0,000 | TANCST
15.634 | 20.913 | # FTN(NC) | | | | | UM | EM | VAR(M) | VAR(M1) | 083 DEV | 15.08T | ANDMG
21.141 | O FINENCE | | OBJECTIVE FUNCTION FOR VARIABLE | R VARIABLE 3 | .36668+02 | .3655E+02 | | 36436+02 | | | | | | | | | | U - Z | E N | VAR SM) | VAR(M1) | 081 DEV | 14NCS1 | ANDMG
28,100 | FTN(NC) | | | | | ∪ -
Z | EN | VARCH) | VAR(M1) | 083 DEV | 14NCST | ANDMG
22.65% | O FTN(NC) | | VAR 3 ADJ FROM | 5139,54 TO | 4985.36 | N - | ΣN
Σ | VAR(M) . 494E+04 | VAR(M1)
.499E+04 | 08J.DEV | . S. O. S. | ANDMG-21.306 | # TN(NC) | | | | | u - | E O | VAR(M) | VAR(M1)
4494E+04 | 080 080 | 1 N N 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 | ANDHG
21.366 | SONE SON | | | | | Q № | E N | VAH(M) | VAR(M1) | 06J 0EV | 14NCST | N N N N N N N N N N N N N N N N N N N | G FIN(NC) | | | | | UM | Ξ NI | VARCM) | VAR(M1) | 08J DEV | TANCST
14.885 | ANDMG
21.619 | 0 FIN(NC) | | OBJECTIVE FUNCTION FOR | R VARIABLE 2 | .3639E+02 | .3643E+02 | | .3650E+02 | | | | | | | VAR Z ADJ FROM | D1 06"6567 | 5016.16 | u⊶
Z | E W | VAR(M)
4499E+04 | VAR(M1)
502E+04 | 000 * 0 | 15.210 | A NOTE OF THE PERSON PE | TTN(NC) | | | | ************************************* | 有我们就是我们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们 | | # # # # # # # # # # # # # # # # # # # | ## ## ## ## ## ## ## ## ## ## ## ## ## | 有有有有有有有有有有有有有有有有有有有有有有有有有有有有有有有有有有有有有有有 | # # # # # # # # # # # # # # # # # # # | | • | | | | SUB-ARE | A RUNUFF | COMPUTATION | NOI. | | | | | | | | POTENTIAL
J | RESERVOIR INFL
STAG ICOME
10 0 | UW
IECON ITAPE
0 2 | | JPLY JPRT | M -
E
A
Z | ISTAGE I | IAUTO
0 | | | | | | PREVIOUSLY GENE | GENERATED HYDROGRAPHS | RAPHS | READ FROM | 4 A P E | | | | | | 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 1.50 | . T | | | | | | | | | | 0 4 0 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 | 480.
400. | 30. | के के ब
क क
ख | 17. | <u></u> | 0 % : | - N | 111. | | | | | • > 1 | | (| | | | | • | | | | 化分类性 化分类性 化二苯甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲 | JPRT INAME ISTAGE IAUTO 0 | TPMP LOTA 0 0 0 | TSK STORA
0.000 *1. | 6300. 0. 0. 0. 24000. | | TOTAL VOLUME | 2020 | | 67.61 | 1430. | 1772. | | | | 2 | | | | | | | | | | TOTAL | | | | | | |
--|---|---|------------------------|-----------------------|-----------|--------------|----------------|--|-------|-------|------------|--|-----------------|------------|-------------|-------|-------|--------|-------|---|---|-----------------|---|-----------|---------|-------|--|---|-----------|-------|--| | | 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | SAME
IOPT | × 000*0 | \$080° | 1, R710 | 72*HUUR | * 8 | 77. | 50001 | 1456 | 1772 | | 434. | or x | alion-cr | - | | | | 27.25 | | 529 | | 1, KT10 | 72-HOUR | 579 | • · | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2872 | 3543 | | | €E
€E
€E | APH ROUT | LL PLANS HAVE 84
ROUTING DATA
IRES ISAME
1 | AMSKK
0.000 | 6100. | 030, PLAN | SA HOLLR | | 0
0
0 | 5.5 | 1217 | 1501. | | AGE # | 1050, PLAN | 9,1011-96 | | 20 | , 78 | 19,73 | 1000 | | AGE m | • | 050, PLAN | 24-HUUR | 02.21 |
 | 7 | 2 C T T C | | | | | HYDROGRAPH IFICATION REAGING 1 | ₹ | LAG | 00 | ATION 1 | 6.
HOUR | *, 40 | * 3 | 6.10 | 450. | 55.2° | | MAXIMUM STORAGE | STATION | 310714 | 1091. | 31. | 62. | 7.34 | 2.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4 | | MAXINUM STORAGE | | STATION | 6-HOUR | 0.00 | | | 10 C | 1138. | | | 安全 | CHANNEL MODIF
STAG ICOMP
1030 | A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | NSTOL
0 | 1020 | STA | 다.
소
소 | 441. | • | | | | | XAX | A P | \
\
0 | 1119 | 30 | | | | | XAM | | AT8 | PEAK | 1940 | 55.5 | | | | | | 在 | POTENTIAL CHA
ISTAG
1030 | 000°0 0°0
88010 88010 | 0 - C | 0°. | | | n o
⊾ ≥
 | S SE | | -3 | THOUS CO M | | | | | 8 LU | 8 E U | INCLES | | A TO WILLIAM |) | | | | | 9 (L) | 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0 N C J C J C J C J C J C J C J C J C J C | | 2 | | | # | | | | STORAGE | • | | MAXIMUM STURAGE # | | | CST ILPR
000 2 |------------|---|---|---------|-------------|-------|-------|-----|----------|-------|-----|-----|--|--------------|------|------|-------|--------|------------|------------|------|--------|-------|-------------|-------|-----------|--------|-------|-------|-------|---------| | | 107AL VOLUME
3051999-
8642-
13.48
342-41
2523-41
31128- | ION
ADSCNT AANCS1
0.00000 0.00000 | Z, RYIO 9 | 72*HUUR
144*
1144*
1242*
342*
3125*
3126* | SSOS. E COMPUTATION T IAOST A | 1030, PLAN | 24*HDUR
11267*
319*
11.94
303*38
22359*
27580* | 16E = 1000 DAMAG | | 30 ° | | 0 | ٥. | . | | | 0 | 0 | . | > 0 | • | • | 00 | | | | YPE 3 | 00.0 | 6.00 | 200 | 4 | . o. a | i nu | .0 | 0 4 | 21,97 | | STATION | 6*HDUR
19364*
19364*
548*
543
130*35
4607*
11850* | XIMUM STE
D ANNUAL
ISAME | | TYPE 5 | | | | | | | | | | | | | 30,200 | . OA | | | YPE 2 | 00.00 | . 30 | | ยส
วาง | 1,07 | . O | . 20 | 25. | 10.02 | | | 0
00
000
000
000
000
000
000 | N N N N N N N N N N N N N N N N N N N | NA | • | • | ċ | • | - | ٨ | æ | × | O . | 3 . u | . 0 | C 8 | 10.3 | 18.10 | SFORT | Z | |
 | 0 | ~ 04 | - | - 2 | | | ٤n | 0: | 1,59 | | | SOUTH TO SOUTH | A NFLOO | 1030 PL | TYPE | ċ | ċ | | • | • | | • | • | | * • | _ | _ | 900 | UAL DA | 1030 PLAN | | SUM TY | 0.00 | 000 | 10801 | 7.73 | 5.0 | 3,70 | 1,50 | . 66 | 3,58 | | | | 181 | STATION | | | | | | | ٠. | | 7 | | | | | 50.100 | AVERAGE AN | STATION | PRUB | F- | 782 | 1.752 | 200 | 100 | 391 | .136 | .037 | .014 | 0.46 3 | | | | | < | | | | | | | | | 10000
10000
10000 | | | _ | 12100 | 21000 | ENT OF | AMAGES FOR | EXCD | P P P | 000 | 3.462 | 760 | .867 | 3.03 | .095 | • 020 | 9000 | AVG ANN | | | | | ONOMIC | FREG | 000.9 | 5,500 | 200 | 2,500 | 1.500 | 006 | 007 | . 500
500
500
500
500
500
500
500
500
500 | 200 | .150 | *100 | 0.50 | 000 | Acous. | 000 DA | | | 76 | 1139 | 202 | 4312 | 6699 | 10101 | 15177 | 20003 | | | TOTTE 1700, 5000, 149, 7000, 8300, 940 TOTTE 1700, 5000, 149, 7000, 8300, 940 TAK = - CATEGNRY DAMAGES TOTTE 173 | | 1 | | à | | | | | | |--|-------------------|---|---------------|--------------|---|----------|---|-----|--| | PERK CATEGORY DAMAGES 155. 0.00 156. 0.00 157. 0.00 158. 0.00 159. 0.00 150. 0 | CAPACITY# | 1700. | 5000. | 00 | 7000 | | W W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | • • | | | PECK = CATEGNRY DAMAGES 130. 0.00 0.00 0.00 380. 0.00 0.00 0.00 380. 0.00 0.00 0.00 380. 0.00 0.00 0.00 380.
0.00 0.00 380. 0.00 380. 0 | | | | | NIMUM DESI | N DAMAGE | | | | | 750. 200. 0.00 0.00 0.00 0.00 0.00 0.00 0 | ¥ | CATE | AMAGE | | | | | | | | 380. | 20 | 00.0 | 9.0 | • | | | | | | | 740. 101 .08 1.73 200. 250 .253 .553 .849 520. 435 .253 .538 540. 62 40.8 1.73 540. 62 40.8 1.73 540. 62 40.8 1.73 540. 62 40.8 1.73 540. 62 6.10 540. 62 6.10 55 | 0 | 00.0 | | 0 | | | | | | | 200. 250. 35 2.53 5.44 2 2.53 5.45 5.45 5.40 0.00 0.00 0.00 0.00 0.00 | ~ ~ | 70. | 00 | • | | | | | | | ### 52.53 | 3200. | 522 | ` | . 7 | | | | | | | 75.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 | * 020a | 36 | ស្ម | GC : | | | | | | | 140. | - | 3 (v. | - 5 | ∿ ೦ | | | | | | | 340. 669 5.01 13.11 540. 682 6.10 1100. 1.17 7.77 18.61 1000. 1.17 9.90 22.09 1000. 1.17 9.90 22.09 130. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 | | 29. | | 9 | | | | | | | 1100 1117 1510 1510 1510 1510 1510 1510 | 7340. | . | G, | | | | | | | | 1100. 1117 9.90 22.09 1000. 1143 14.08 27.00 1000. 17.5 17.5 29.32 MAXIMUM DESIGN DANAGE 135. 0.00 0.00 0.00 220. 0.00 0.00 0.00 220. 0.00 0.00 | 00000 | 0 0 0
0 0 0 | ~ ~ | ນ ແລ
ລິດເ | | | | | | | 1143 14,08 27,00 0000 1,751 29,32 MAXIMUM DESIGN DANAGE 0150 0.00 0.00 0.00 280 0.00 0.00 0.00 280 0.00 0.00 0.00 280 0.00 0.00 0.00 280 0.00 0.00 0.00 280 0.00 0.00 0.00 281 0.00 0.00 281 0.00 0.00 281 0.00 0.00 282 0.00 0.00 282 0.00 0.00 283 0.00 0.00 284 0.00 0.00 284 0.00 0.00 285 0.00 0.00 286 0.00 0.00 286 0.00 0.00 286 0.00 0.00 287 0.00 0.00 288 0.00 0.00 288 0.00 0.00 288 0.00 0.00 288 0.00 0.00 288 0.00 0.00 288 0.00 0.00 288 0.00 0.00 288 0.00 0.00 288 0.00 0.00 288 0.00 0.00 288 0.00 28 | 2100 | | . C. | ~ | | | | | | | PEAK = = CATEGORY DAMAGES 130. 130. 130. 130. 130. 130. 130. 130 | 5100 | | ីព | 0 2 | | | | | | | PEAK = = CATEGORY DAMAGES 130. 0.00 0.00 380. 0.00 0.00 280. 0.00 0.00 280. 0.00 0.00 280. 0.00 0.00 800. 0.00 0.00 800. 0.00 0.00 | 3 | | | U . | | DAMAGE | UNCTION | | | | 130. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | ~ | CATE | AMAGE | | | | | | | | ATED SCCONDHIC DATA FOR STATION 1030 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 000 | | ್ಕ | • | | | | | | | ATEO SCEONDHIC DATA FOR STATION 1030 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 0 6
1 8
2 6 | | ç | • | | | | | | | ZEON. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 | - T | | | | | | | | | | ATED ECCNOMIC DATA FOR STATION 1030 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 00 C | • | 0,0 | | | | | | | | ATED SCCONDHIC DATA FOR STATION 1030 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | N C | • | <u>ء</u> د | • | | | | | | | ### 1990 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 10 | | • | | | | | | | | ATED SCONDMIC DATA FOR STATION 1030 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | Ny or
Anga | • | 0, | • | | | | | | | ATED ECCNOMIC DATA FOR STATION 1030 PLAN 2 1000 0000 0000 0000 0000 0000 0000 0 | 20 25 | • • | 20 | | | | | | | | ATED ECONOMIC DATA FOR STATION 1030 PLAN 2 15 15 15 15 15 15 15 15 15 15 15 15 15 | 0 0
0 0 | 3 U | u. | • | | | | | | | 4750 5.04 12.29 47.98 16.86 47.98 16.86 10.30 0.000 0.000 0.000 0.1350 13.50 0.000 0.000 0.000 0.000 1740 0.000 0.000 0.000 0.000 1740 0.000 0.000 0.000 0.000 1740 0.000 0.000 0.000 0.000 1740 0.000 0.000 0.000 0.000 1740 0.000 0.000 0.000 0.000 1740 0.000 0.000 0.000 0.000 1740 0.000 0.000 0.000 0.000 1740 0.000 0.000 0.000 0.000 1740 0.000 0.000 0.000 0.000 1740 0.000 0.000 0.000 0.000 1740 0.000 0.000 0.000 0.000 1740 0.000 0.000 0.000 0.000 1740 0.000 0.000 0.000 1740 0.000 0.000 0.000 1740 0.000 0.000 0.000 1740 0.000 0.000 0.000 1740 0.000 0.000 0.000 1740 0.000 0.000 0.000 1740 0.000 0.000 0.000 1740 0.000 0.000 0.000 1740 0.000 0.000 0.000 1740 0.000 0.000 0.000 1740 0.000 0.000 0.000 1740 0.000 0.000 0.000 1740 0.000 0.000 0.000 1740 0.000 0.000 0.000 1740 0.000 0.000 0.000 1740 0.000 0.000 1740 0.000
0.000 0.000 1740 0.000 0.000 0.000 1740 0.000 0.000 0.000 1740 0.000 0.000 0.000 1740 0.000 0.000 0.000 1740 0.000 0.000 0.000 1740 0.000 0.000 0.000 1740 0.000 0.000 0.000 1740 0.000 0.000 0.000 1740 0.000 0.000 0.000 1740 0.000 1740 0.000 17 | 2100 | 10
10
10
10
10
10
10
10
10
10
10
10
10
1 | - | • • | | | | | | | ATED SCCNOHIC DATA FOR STATION 1030 PLAN E 1030. 1130. 0.000 0.00 | 1000 | 200. | °°. | o in | | | | | | | PEAK SUM TYPE 1 TYPE 2 TYPE 11330, 0.000 0 | ATED SCON | DMIC DATA | OR STATI | 10 | | | | | | | 1130. 11 | T. | MUS. | YPE | TYPE | 7 YP | | | | | | 1380
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740
1740 | نده ن | 00.0 | 9 5 | 00.0 | | | | | | | 1740. 0.000
0.000 | 30 | 0.00 | | 00.0 | | | | | | | 5200. 0.000 | 7 | 00.0 | ្ | 00.0 | .0 | | | | | | 5011. 0.000 | 10 C | 0.00 | 90 | 00.0 | e e | | | | | | 5016. 1.619 .110 .424 1.8520. 3.519 .183 1.013 2.8520. 5.879 .273 1.013 2.8534. 8540. 11.318 .428 3.191 7.0000. 16.337 .608 4.710 11.810. 22.900 1.033 6.524 14.8520. 37.180 1.033 6.524 14.8520. | 0 | 00.0 | • | 00.0 | | | | | | | 5520. 5.519 .163 1.013 2.5540. 5.5879 .273 1.555 4.7540. 5.559 .348 3.191 7.5500. 16.337 .608 4.710 11.7510. 37.191 7.5500. 37 | 9:0 | 1.61 | | N. | ======================================= | | | | | | 4.5240. 9.359 3.423 2.493 6.8540. 11.318 4.248 3.193 6.8000. 16.337 6.08 4.710 11.710. 21.900 3.793 6.524 14.710 11.793 6.524 14.710 11.793 6.524 14.710 11.793 6.524 14.710 11.793 6.524 14.710 11.793 6.524 14.793 6.524
14.793 6.524 14.793 | 0 0 | 10 m | •~> f | - 1
C - 1 | ณ์ | | | | | | 8540. 11.318 .428 3.191 7. 0000. 15.337 .608 4.710 11. 2100. 20.900 .793 6.524 14. 55100. 30.33 9.539 19. | 340 | 0000 | UM | - 6 | ร้อ | | | | | | 00000. 16.337 .608 4.710 11.
2100. 21.900 .793 6.524 14.
25100. 30.180 1.033 9.338 19. | 540 | 11,31 | . | 3,19 | | | | | | | 2100. 21.900 .793 6.524 14.
25100. 30.180 1.033 9.536 19. | 0000 | 16,33 | O . | 4.71 | | | | | | | | 000 | 06.12 | ۲. | -0 (| 3 (| | | | | | | 0 0 | 200 | ت ا | 0.1 | • | 148 | 680 | 70 | • | | | | | | | | |-------------|-----|-----|------|-------|------|-------|------|-------|-----|---------|---------|----------------------|-------------|--|--------------------------|------------|-------|--|----------|---|----------------|----------------------------------|---|----------------|---|------------| | | | | | | | | | | | | | | 教育教育教育教育教育 | ISTAGE IAUTO 0 | | 129. | 833. | | \$ | 古文代表教育技术教育 | | ISTAGE TAUTO | L S T R | | • | | | | | | | | | | | | | | | 9 a 5016. | *** | INAME | TAPE | 40.00 | | | | ** | | NA ME | I DVR | STORA
•1• | 6300° | | | | | | | | | | | | | | | DESIGN 6 | 有核型作业技术技术技术 | JPRT | 180
180
180
180 | 260 | 1150. | 151 | | 电电影电影电影 | | JPRT
0 | a 0
a
- | 13K | | 5 4 | | | | | | | | | | | | | | C
• € | | PUTATION
JPLT | REAL | | | 194, | | | ROUTING | JPLT | SAME
A IOPT | × 000.0 | 3080 | N 1, RTIO | | | | | | 00.0 | ಬ | 1.79 | 1.46 | 99* | 200 | 77.7 | 17,53 | INUAL . | *** | SUB-AREA RUNDFF COMPUTATION MP IECUN ITAPE. JPLT 0 0 0 2 | D HYDROGRAPHS | 213 | 343, | 19. | . | **** | HYDROGRAPH ROU | REACH
ITAPE | PLANS HAVE SAME
ROUTING DATA
ES ISAME I | AHSKK
0.000 | 6100. | 2030, PLAN | | 6
6
5 | | | | 00.00 | • 10 | .71 | •63 | 55. | 0. | 1.93 | 60.8 | TOTAL ANNUAL | | B-AREA R
IECUN | GENERATED PLAN | 800 | • | 13. | | | HYDRO | R BYPASS | ALL | LAG | 20505 | STATION | | ~ ~ | | | | | · | | | - 0 | | | 0. | 104. | #
#
| SUE
ICOMP | PREVIOUSLY | 802 | 1340 | . S. | | ************************************** | | ICOMP 1 | 0 • 0
0 • 0 | NSTOL | 1020. | STA | | PLAN | | | 200 | 0 | 0 | .11 | 80. | 400 | • | .27 | 1,32 | | 我我也我会会会会会 | 1STAG
20 | PREV | 190 | 1270. | 385 | • | 我我我我我我我我我 | | ISTAG
ZO30 | 0000
0000
0 | S d L S A | | | | 0801 | | | 00.0 | 00.0 | .35 | 2,61 | 2.17 | 70°1 | • | 6.63 | 26.95 | CAP COST | | | | 6.
178. | 1150. | 4 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | • 0 | | | POTENTIAL LEVEE
ISTAG
2030 | \$ \$ 0 ° 0 | | N O | | | PRUB | 200 | 400 | .776 | 570.1 | .785 | . 391 | 136 | 200 | • | DMG | 8#1 | LOCAL PROTECTION CAP | 发展 | | | 165. | | | •01 | · 我们在我们的 · 我们们 我们们们 · 我们们们们们们们们 | | | | | 00 | | | EXCD | 000 | 400 | 160 | 769 | 867 | .323 | 000 | | | AVG ANN | AVG ANN | LOCAL P. | | | | 9 | Č i | Λ · | | | | | | | STORAGES | | | 000 | | | | | | | | 20504 | | | | | | | | | | | | | | | | | 810
TUO | | Several pages of printout deleted | D0 4 * • • • • • • • • • • • • • • • • • • | A A O O O O O O O O O O O O O O O O O O | | |--|---|--| | TOTAL VOLUME
3051998
86428
13848
342841
311288 | 10N
ADSCN1
0.00000 | | | 72=HOUR
50 H 4
144
13 • 48
342 • 41
342 • 41
31128 • | SSOS.
E COMPUTATION
I LAGST
0 0 0 | | | 24 e H G U R H B L B L B L B R B R B B B B B B B B B B | и
О О ФАМАС
О © О Ф О О | | | 6*HUUR
19364.
548.
548.
130.35
9607. | MAXIMUM STORAGE
EXPECTED ANNUAL FLUD
NDMG ISAME TRGT
1 0 | | | 00 00 00 00 00 00 00 00 00 00 00 00 00 | EXPECTE NA | 0 | | 000XFX
UUUX
UUUX
UUU
VU
VU
VU | NFL.00 | F SOUNDS FORM COM COT CO | | THOUS | 1.05
2.03
4.03
3.0 | STATION 2080
0.000
0.000
0.000
1.000
11.000
13.000
13.000
13.000
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
22.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.300
23.3 | | | | | | | | T | | | • • • • • • • • •
• • • • • • • • • • • |--|--|----------------|--------------|------|-----|------|------|------|------|-------|-------|-------|---------------------|-------|------|-----------------|---|------|------|--------|------|-------|-------|------|-------|-------|-------|-----|-------|---------|------|-------|-------|------|-------|-------|-------|--------|-------|--------|------|------|--------|--------|--------|---------------------------------------| | | 00 | Z | | | | | | | | | | • | | | | ζ | 08CNT | 9300;
340; | FUNCTION | | | | | | | | | | | | | 1 | DAMAGE FUNCTION | N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
O &
K N | DAMAGE FI | | | | | | | | | | | | | | ±
⊕
• | LOCAL PROTECTION DATA XLPMX XLPMN XANCST XDSCNT 5500. 170002300 .05040 | 80
20
20
20
20
20
20
20
20
20
20
20
20
20 | 7000 | MINIMUM DESIGN | | | | | | | | | | | | | | MAXIMUM DESIGN | | | | | | | | | | | | | | PLAN | | | | | | | | | | | | | | | | THIS DATA | | XLP
630 | 5500. | Z
Z | | | | | | | | | | | | | | ₩
W | | | | | | | | | | | | | | 2030 | | | | | | | | | | | | | | | | 2 | | | | | 0 | | | | | | | | | | | | | 0 | 2 | | | | | | | | | | | | | TATION | Y BE | 00000 | 000.0 | 000 | | 000 | 0.000 | 2,275 | 3,000 | 000 | 000 | 000 | 54.500 | 14,300 | 50.100 | Σ × C | | | 5000 | | 13 A C A C C | | | | | | | | | | | | | | 0 M S M S M S M S M S M S M S M S M S M | | | | | | | | | | | | | 0.00 | | | | | | | | | | | | | | | | | | |
O Ni | | X
D
D | | | | | | | | | | | | | 2
0 | CA LEGURA | | | | | | | | | | | | | 2 4 4 0 | SUM | 000.0 | 00000 | 0000 | 00000 | 000 | 0.000 | 12,275 | 006 5 | 007.01 | 300 | 100 | 34.500 | 14.300 | 50,100 | | | | 1700. | | 000 | 00.0 | 07. | 5,00 | 7.20 | 6 | 7.00 | 16.40 | 20.30 | 23.10 | က ရ
(၁၀)
(၁၀) | 30 m | 000 | F 4 1 2 | 4 S | 000 | 9 | 0 7° 6 | 000 | 0 0 | 11.80 | 3.40 | 20.30 | 23.10 | 28.00 | 200 | 50.10 | J NOR | • | | | | | | | | | | | | | | | i. | | | 8 B
2 m | | e
3 | | | | | | | | | | | | | | 8
E | | | | | | | | | | | • | | | | 1030 | 1130 | 1380 | 1740 | * 000 | 1000 | 4985 | 5620 | 0879 | 4340 | 2000 | 12100 | 15100 | 21000 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | CAPACITY® | | PEAK | 1130 | 740 | 280 | 200 | 220. | 0000 | 6.080 | 7340. | 8540. | .0000 | 2100. | 0000 | | 4 . | 1030 | 1380 | 1740 | 0822 | 5200° | 4800 | 5620 | 7070 | 8540 | 0000 | 001 | 21000 | | 1 | | | | | | | | | | | | | | | 3 | | 1000 DAMAGES FOR STATION 2030 PLAN 2
10. FLOW FREG 1707
2 1139, 5.462 1.752 0.00 0.00
2 1239, 5.462 1.752 0.00 0.00
4 2421, 1776 0.00 0.00
5 4312, 867 278 2.13 2.13
6 5699, 323 391 6.54
7 10191, 0.095 1.36 2.13
6 5699, 323 391 6.54
8 15177, 0.00 0.037 1.50 1.50
8 15177, 0.00 0.037 1.50 1.50
8 20003, 0.04 14.52 14.52 | |--| |--| Several pages of printout deleted ## EXHIBIT 7 SIZING RESERVOIR, PUMPING PLANT, DIVERSION AND UNIFORM PROTECTION LOCAL PROJECTS (Unconstrained) | | | | | | | | | | | | | TEGEND | N = NEW INDIT DATA | | R = REVISED INPUT DATA | ()= REVISED INPUT DATA |---|---|-----------|-----------|-------------|------------|------------|------------------|----------|----|-----------|-------|--------|---|-------|------------------------|------------------------|--------------|---|------|-------------|----------|------------|------|------------|-----------------|----------|-------------|----------|------------|------|---|---------|-------------|------------|-------------|-------------| | | | | | 600 | 3000 | 2720 | 580
580 | | | | | | | 00005 | 7200 | | | | | (| 10 p | <u>ر</u> . | 6480 | | • | | ~ •7 | 11.0 | | | | 4880 | 2 | 298 | | 80° | | TOTAL | 4.0 | | | - 15
5 | 1920 | 3330 | .ρο
• | 3.5 | | | | | | 00017 | 0004 | | | - | | | 4 | | 5620 | | ٠ | | O• 7 | 0 | | | | 56.20 | | .53 | | 3,53 | | | 3,25 | | | 17.5 | 1290 | 3980 | 670 | 25 | | | | | 0204 | 12500 | 5650 | | | | | | | | 4800 | | ب | | ٠,
۳ | 7.8 | | | | 4800 | • | .43 | | 2.73 | | | 2°50
2°50 | - | | 200 | 1040 | 4600 | 0
0
0
0 | 2 | _ | | | 7 | E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 11000 | 0503 | - | | | 6300 | 24000 | ۰ | • | 4220 | | | | o.
N | 15.0 | | | | 4220 | > | • 36 | : | 2,53 | | | 1,50 | | | 88 | 0.6 | 5100 | 775 | 3 (| æ | | - | | 0.00 | 000 | 6350 | | 5 | | 3080 | 10250 | | 0.0 | 3200 | 21000 | • | ∞ | ~ -
~ - | 4.7 | 30.2 | | 005 | 3000 | 21000 | Ş | ٠
•
• | . 7 . 7 | | | 00 | | | 50 | 078 | 5370 | \$ t. | ŝ | | | | | | 1000 | 3600 | | TION REACH | | 2135 | 6100 | | N 0 | 2280 | 15100 | • | <u>.</u> |
 | N | 27.8 | • | 0 %
0 %
0 % | 288 | 15100 | ₹. | 9 t | , a c | | | 0.70 | 11 m 20 1 | M INFLOW | 3 | 000 | 5360 | 252 | 3. | | | ; ; | | 975.0 | 1030 | 3000 | | WUDIFICATION | | 076 | 2050 | > 15
 | .0. | 1740 | 12100 | ~ ' | v : | .0.3 | ند.
- | 23.0 | 9020 | 2000 | 1 7 4 0 | 12100 | | 1.1 | 00.0 | | | 0.50 | | RESERVOIR | - 92
- 7 | 760 | 5080 | 1240 | 35 | | KESEKVOIK | | | 0007 | 5101 | 5400 | | | * | 475 | 1020 | • v. | 10 | 1380 | 10000 | ₹. | | n c
0 | 0.1 | 19.0 | | 007 | 1380 | 10000 | 0: | • | 7.70 | | • | 0.30 | 0 | FUIEN-IAL | ₹. | 710 | 0007 | 160 | 8 | | MUTUACO X | | | 2500 | 1000 | 1500 | 1030 | 1.0 | | 50 | 00 7 | | • 15 | 1130 | 0758 | ~ (| | 9.9 | • | 9:5 | 1000 |) () () () () () () () () () (| 1130 | 0758 | o (| u c | 6.16 | | > .0 .0 | - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | • | ;
• | ž | 099 | 3450 | 2. 5.
5. 7. | 07 | | E
L | | - | 0000 | 965 | 0 | | ? | | • | 0 2 0 | 3.0 | . 25 | 1030 | 7.540 | 00 | • | N.
EG | • | 7.5 | 1700 | 27 | 1030 | 7340 | 0 9 | • | | | o ++ - | , - N | 3 ¥ . | - 1 | z | z : | z z | · z | Z | ×. | - > | - > | (| , - | . A | M | ¥ • | - > | | N: | 5 | ,
! | - | n (| ∾ ⊬ | · -17 -2 | , < | : =3 | 7 | 3 ' | - | ۰ ۸۰ | м | M | J < | . 9 | . 3 | | | | | | | X. | | | | | | | | | LEGEND | N = NFW INPILE DATA | | | | | | | | | | | | | 選号(2)を | Andrew Control of the | | | | | | | | | | | | | |---|---------------|-------------|------------|----|------------|-----------|-------|------------|-------------|------|------------|----------|--------|--------|---------------------|-------|--|-----------|---|--------|-------------
--|----------|------|-------|---------|-------------------|--------|--|---|--------------|------|----------|------|-----------------|------|-------------------|------|-------|----------|----------| | | • | • | | • | | | 240 | 2720 | 280 | ~ t | <u>^</u> | | | | | | | | | | (| e la | | 0879 | | 10.4 | | | | 0 | 16.4 | | 70.7 | | | 20. | 1000 | 006 |
O | 3 0 | | | | • | • | | • | | 1 | S. S. | 1760 | 365 | 91 | | | | | | | 8300 | | • | | | | • | 5620 | | 13,9 | | | | 2020 | 13.9 | | 13.4 | | | 1.06 | 939 | 1110 | 120 | <u>.</u> | • | | : | • | • | • | - | | | 375 | 1240 | 470 | 50 I | V | | • | | | | 7500 | | | | | | | 4800 | | 11.0 | | | | 0087 | 11.8 | | æ.
== | | | 36. | 1 0
2 5
3 5 | 1330 | 153 | æ (| • | | | • | • | • | • | | | 061 | 1040 | 20 9 | 9 | . - | | | • | | | 9019 | | | | 24000 | ٥ | • | 4220 | | e.
6 | | | | 0226 | 60
O | | æ. | | | | 350 | 1530 | 200 | ۵:
د | • | | 26.32 | 0 | 66° | 7.98 | ٥, | 92.01 | | 85 | ⊖ ç
• • | 24. | 9 | 2 N | 4810N | eles V | | | | 5200 | | | 3080 | 10250 | | n w • • | 3500 | 21000 | 2. | | 0300 | 340 | 3200 | 2 N | 50.1 | ~;
`` | 0 | | • | 105 | 1690 | 522 | 22 | 2 | | 27.00 | • | 79. | 20.5 | • | 12,29 | | 50 | 940 |) | 7, | | E DIVE | • | • | | 0200 | 2000 | | 3 | 2. (5 | 0019 | i
f | 0 0
V | 2230 | 15100 | | E | 8300 | 283 | 2280 | 5.00
5.00 | 6,44 | S. | Ç.77 | ğ | | - £ | 1810 | 330 | 92. | 3 | | 00. | • | N) (| 3.18 | • | 7.15 | | 33 | 000 | 0000 | | 2 | ¥CC | • | | | • 015 | 3400 | ONE OUVUN | 5 | C 22 0 | 2020 | • t | n # 0 | 1740 | 12100 | ้ | 34.5 | 2000 | 22.5 | 1740 | 2.4 | 34,5 | ವ)
സ | 34.5 | TO FOREBAY POOL | | - 54. | 1800 | 415 | n) | = | | , , , , , , , , , , , , , , , , , , , | | ۍ
د
د | 1.75 | 0 | 3,50 | 35.1 | 92 | 760 | | 120 | 32 | RVDIR TO | | | | 1500 | 200
200
200
200
200
200
200
200
200
200 | | | 475 | 1020 | | î : | 1380 | 10000 | • | 9.6
9.6
9.6 | 5500 | 67. | 1380 | 1.6 | 28.0 | 1.6 | ~ | Š | 0.0 | אלג | 1650 | 515 | 7 | 7 | | , c. |) 0
}
! | 70. | - %
- % | • | 3 0 | >
u | 2 | 710 | 000 | 160 | 30 C | * | | | 2000 | • | 1550 | 2030 | 3 | ď | 00 ≥ | <u>.</u> | u i | 1.00 | 6540 | • | 23.1 | 2000 | 103 | 1130 | 97 C | 23.1 | 0 | S | UCAL INFI | | * 5
` | 1540 | 615 | 25 | 8, | |) ;
; |
• | ٥, | - 0 | | ۰, | >
• | 72 | 660 | 3450 | 512 | ş- | . 3 | | | | 20000 | 00 | - | | | • | 2030 | ٠, | 030 | 7340 | 0 | 20.2 | 1700 | 42 | 1030 | 7340 | 20.3 | 0 | 20°3 | | ÷: | ± 6 | 320 | 730 | ~ | - | | | | | | 7 | FLW DEV | 19 0 FTM(NC) | FLW DEV | FLW DEV | 16 0 FTN(NC) | FLW DEV | FLM DEV | 16 0 FTM (MC) | | |---------------------|--|---|--|--|--|--
---|---|--|---|--|---|--| | | | 0 | | FL* 085 | FL* UBJ | | FLM UBJ | FL# 083 | | FLW 08J | FL ~ DBJ | | | | | 4.40 | \$. | | TRG FLUM
0.000 | TRG FLOW | 08J DEV 1A | TAG FLUW
0.000 | 186 FLUW
0.000 | UBJ DEV 1A | 186 FLDW
0.000 | TRG FLUW
0.000 | 08J DEV TA | | | IPLT IPHT NSTA | FОЯМЕD
1
50 2.20 3.25 | 01V 7
-500s | 0000 • 0 | INT FLOW
6015,571 | INT FLOW
7808,356 | VAR(M) VAR(M1) | INT FLOM
6054.577 | INT FLOW
7806,350 | VAR(M) VAR(M1)
596E+04 .396E+04 | INT FLOW
6099.605 | INT FEUN
7808,356 | VAR(M) VAH(M1) | *1067E+04 | | SPECT
THR
NWT | 4 ANALYSES TO BE PER
4= 2 NRTIUM 9 RTIOM
0 1600 16 | | FIXED COST INPU | 181A
1030 | ISTA
2030 | W W JN | 181A
1050 | 1STA
2050 | NO NO | 181A
1630 | 151A
2030 | E - | .1066E+04 | | I WIMA WHE WOLLD | MULTI-PLAN
NPLAN
• 25 | VAR 3 | | | | | | | | | | | .1065E+04 | | | #SOLLO | VAR 1 VAR 2 = 200. | | | | | | | | | | | OBJECTIVE FUNCTION FOR VARIABLE 1 | | | JUB SPECIFICATION 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | JUB SPECTFICATION 50 0 0 0 0 0 0 3 0 0 0 3 0 0 0 0 0 0 0 0 | NO NHR NMIN IDAY THR IMIN IETE IPLT IPRT NSTAN O O O O O O O O O | JUB SPECIFICATION 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 | JUB SPECIFICATION JUDEA THR JAIN WERE IPLI IPRI NSTAN O 0 0 0 0 0 0 3 0 0 JUDEA NOT LREPT THACE MULTI-PLAN ANALYSES TO BE PERFORMED MULTI-PLAN ANALYSES TO BE PERFORMED MULTI-PLAN ANALYSES TO BE PERFORMED NPLANZ NATIONS 1 1.50 Z.20 3.25 4.40 1.50 J. O | HIGH WHEN WATH 19AY THE JAIN METRE 1PLT 1PHT MSTAN 60 1 0 0 3 0 0 3 200 8 2 0 JUDER NOT LRIPT THACE 60 0 3 0 0 JUDER NOT LRIPT THACE 60 0 3 0 0 8 200 8 2 0 0 0 8 200 8 2 2 0 0 0 0 8 200 8 2 2 0 0 0 8 200 0 0 0 0 0 0 1 5 3 0 0 0 1 5 3 0 0 0 1 5 3 0 0 0 1 5 3 0 0 0 1 5 4 4 0 1 5 5 0 0 0 0 1 5 5 0 0 0 1 5 5 0 0 0 1 5 5 0 0 1 5 0 0 1 5 0 0 1 5 0 0 1 5 0 0 1 5 0 0 1 5 0 0 1 5 0 0 1 5 0 0
1 5 0 0 1 | JUB SPECIFICATION JUB SPECIFICATION | JUH SPECIFICATION 100 100 100 100 100 100 100 1 | JUB SPECIFICATION JUB SPECIFICATION DO D D D D D D D D | HULTI-PLAN ANALYSES 11) BE PERFURNED ***AUR 2 VAR 4 VAR 5 THE THAUT FLOW ***AUR 2 VAR 5 VAR 4 VAR 5 THE THOUT FEAR ***AUR 3 VAR 4 VAR 5 THE THOUT FAN ***AUR 4 VAR 5 THE THOUT FAN ***AUR 5 VAR 6 VAR 5 THE THOUT FAN ***AUR 6 VAR 7 THE THOUT FAN ***AUR 7 THE FLOW FLOW FLOW FLOW FLOW FLANDER ***AUR 7 THE FLOW FLOW FLOW FLOW FLOW FLANDER ***AUR 7 THE FLOW FLOW FLOW FLOW FLOW FLANDER ***AUR 7 THE FLOW FLOW FLOW FLOW FLOW FLANDER ***AUR 7 THE FLOW FLOW FLOW FLOW FLOW FLANDER ***AUR 7 THE FLOW FLOW FLOW FLOW FLOW FLANDER ***AUR 7 THE FLOW FLOW FLOW FLOW FLOW FLANDER ***AUR 7 THE FLOW FLOW FLOW FLOW FLOW FLANDER ***AUR 7 THE FLOW FLOW FLOW FLOW FLOW FLANDER ***AUR 7 THE FLOW FLOW FLOW FLOW FLANDER ***AUR 7 THE FLOW FLOW FLOW FLOW FLOW FLANDER ***AUR 7 THE FLOW FLOW FLOW FLOW FLOW FLANDER ***AUR 7 THE FLOW FLOW FLOW FLOW FLOW FLANDER ***AUR 7 THE FLOW FLOW FLOW FLOW FLOW FLANDER ***AUR 7 THE FLOW FLOW FLOW FLOW FLOW FLANDER ***AUR 7 THE FLOW FLOW FLOW FLOW FLANDER ***AUR 7 THE FLOW FLOW FLOW FLOW FLOW FLANDER ***AUR 7 THE FLOW FLOW FLOW FLOW FLOW FLOW FLOW FLOW | 10 SPECIFICATION 1 | MULTI-PLAN ANALYSES 10 BE PERFURNED Nature 1PLT 11ACF 1ACF | ### WHE WAIN 1947 THE JANN HENCE 1PLT IPHT NSTAN JUDE | | | | 18TA
1030 | 0
4615.376 | TRG FLUW | FLW CBJ | FLW DEV | |-----------------------------------|-----------|--|---|-------------------|---------------------------------|-----------| | | | ISTA
2030 | A INT FLOM
7808.356 | TRG FLOW | FLE 080 | FLW DEV | | 4000.00 TO | 5190 | EN
OT | 1 .200E+03 .519E+04 | 000 000 | 1ANCOT 548,657 | 0 FIN(NC) | | | | 18TA
18TA
1030 | A INT FLOW
0 4646,689 | TRG FLUW
0,000 | FLW 083 | FLW DEV | | | | 100
100
100
100
100
100
100
100
100
100 | 1NT FLOR | TRG FLOW
0.000 | FLW 08J | FLW DEV | | | | ¥ N | 1 VAR(M) VAR(M1)
1 198E+03 519E+04 | 083 DEV
0,000 | TANCST ANDMG
500,340 548,643 | 0 FTN(NC) | | | | 1914 | 1NT FLOW
0 4678-617 | TRG FLOW
0.000 | FLW 085 | FLW DEV | | | | ISTA
2030 | A 127 FLOX
7871-148 | TRG FLUW | FLW 083 | FL* DEV | | | | E NI | 1 .196E+03 .519E+04 | 08J DEV
0,000 | SOO.491 548.624 | 0 FTN(NC) | | OBJECTIVE FUNCTION FOR WARIABLE 2 | .1049E+04 | .1049E+04 | .1049E+04 | | | | | | | 18TA
1030 | A 1NT FLOX | TRG FLUW
0.000 | FLM 083 | 000°0 | | | | 1 ST A 2 0 3 0 | A 1NT FLOW
0 7834,109 | TRG FLOW
0.000 | FLM CBJ. | FLW DEV | | 200°00 TO | 198,36 | Z C | 1 VAR(M) VAR(M1)
2 .500E+03 .198E+03 | 084 DEV | TANCST ANDMG
SOO.313 S40.647 | 0 FINCAC) | | | | 18TA
1030 | 1 1NT FLOW | TRG FLOW
0.000 | FLW 083 | FLW DEV | | | | 18TA
2030 | A INT FLOW | TRG FLOW | FLW 085 | FLW DEV | | | | E L | 1 VARCH) VARCH13 | 08J DEV | TANCST ANDMG | O FINCHC) | | | | 191A
1030 | 1NT FLOW | TRG FLOW | 00000 | FLW DEV | | | | 19TA
2030 | 1NT FLO#
7645,800 | TRG FLOW
0.000 | FL* 084 | FL# DEV | | | | E C | 2 490E+03 198E+03 | 08J DEV
0.000 | TANCST ANDMG | O FTN(NC) | | OBJECTIVE FUNCTION FOR VARIABLE 7 | .1049E+04 | .1049E+04 | •1049E+04 | | | | | | | | 1030
1030 | INT FLOW
4641.270 | TRG FLUW
0.000 | FLW UBJ | F 0000 | |---------------------------------|-------------------------|-----------|--|----------------------|-------------------|--|---| | | | | 2030 | 7578 - 270 F COM | TRG FLOW | 200°0 | FLW DEV | | VAR 7 ADJ FROM | 500,00 TD | 750,00 | T CON | .100E+04 .750E+03 | 000 000 | TANCST ANDMG
517.659 527.738 | ີ | | | | | 4 0
- m
- m
- m | 1NT FLOX
4641.270 | TRG FLOW | FL** 084 | >000
200
300
400
400
400 | | | | | 18 T 8 T 8 T 8 T 8 T 8 T 8 T 8 T 8 T 8 T | INT FLOW
7578.270 | TRG FLOW
0,000 | FLW 083 | FLW DEV | | | | | - X
- X
- X
- X
- X
- X
- X
- X
- X
- X | .990E+03 .750E+03 | 08J DEV
0.000 | TANCST ANDMG
516,779 528,959 | O FTN(NC) | | | | | 18TA
1030 | INT FLOW
4641,270 | TRG FLOW | 700°0
*13 | FLW 0EV | | | | | 181A
2030 | 1NT FLOW
7578.270 | TRG FLOW | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | W W W | .980E+03 .750E+03 | 083 DEV
0,000 | TANCST ANDMG
515,698 530,182 | O FINENCY | | OBJECTIVE FUNCTION | FUNCTION FOR VARIABLE 9 | .10458+04 | .1046E+04 | •1046E+04 | | | | | | | | 18TA
1030 | INT FLOW
4641.270 | TRG FLOW | FLW OBJ | FLW DEV | | | | | 18TA
2030 | INT FLOW
7578,270 | TRG FLOW | 7000° | FLW 06. | | VAR 9 ADJ FROM | 1000,00 TD | 1500,00 | 6 | .519E+04 .150E+04 | UBJ DEV
0.000 | TANCOT ANDMG | . 102E+04 | | | | | 1817 | INT FLOX | TRO FLOW | 780 % | FLW DEV | | | | | 191A
2030 | INT FLOW
7578,270 | TRG FLOW
0.000 | ************************************** | FLW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | NC 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | .514E+04 .150E+04 | 053 DEV
0,000 | TANCST ANDMG
541.629 476.321 | O FINENCY
102E+04 | | | | | 181A
1030 | INT FLOW
4758,866 | TRG FLOW | FL* 083 | FLW DEV | | | | | 18TA
2030 | INT FLOW
7578,270 | TRG FLOW
0.000 | FLW 085 | FLW DEV | | | | | NC NC NC | .509E+04 .150E+04 | 08J DEV | SA9.912 478.401 | D FINCED | | OBJECTIVE FUNCTION FOR VARIABLE | OR VARIABLE 1 | ,1018E+04 | .10186+04 | •1018E+04 | | | | | FL* DEV | FLW DEV | # TN(NC) | FLW DEV | >0°0°0 | . 101E+04 | FLM DEV | FLE 0000 | 1 FTN(NC) | | FLW DEV | FLW DEV
0.000 | 0 FINCHC) | PLW DEV | FLW DEV | FINCNC) | FLW DEV | FL 000 0 | FTN(NC) | FLH DEV | FLW DEV
0.000 | |----------------------|----------------------|-------------------------------------|-----------------------|----------------------|-------------------|----------------------|----------------------|-------------------|---------------------------------|----------------------|----------------------|-------------------|----------------------|--|-------------------|----------------------|----------------------|-------------------|----------------------|----------------------| | FL™ 080. | FL* 08.0 | 504.745 401.783 | 000°0
80 #14 | FLW 083 | TANCST ANDMG O | PLW 085 | F.L.W. OB.J. | TANCST ANDMG 0 | | 0000
0000 | 000.0 | TANCST ANDMG 0 | 780 874
874 | F. E. C. | TANCST ANDMG C | FLM 08J | 000°0 | TANCST ANDRE D | FLW DBC | FLW 085 | | TRG FLOW | 786 FLOW
0.000 | 08J DEV | TRG FLOW | TRG FLOW
0,000 | 083 DEV | TRG FLOW
0.000 | TRG FLUW
0.000 | 083 DEV | | TRG FLUM
0.000 | TRG FLUW | 08J DEV | TRG FLUW
0.000 | TRG FLO™
0.000 | 08J DEV | TRG FLOW | TRG FLUW | 08J DEV
0,000 | *RG FLOW
0.000 | TRG FLOW | | 1NT FLOW
2576,749 | INT FLOW
7578.270 | VAR(M) VAR(M1)
-198E+03 -779E+04 | INT. FLOW
2599,856 | INT FLOW
7609,217 | .196E+03 .779E+04 | INT FLOW
2621,135 | INT FLOW
7640,290 | *194E+03 .779E+04 | .1007E+04 | 1NT FLOW
2566,451 | 1NT FLOW
7550-181 | .750E+03 .200E+03 | INT FLOW
2575,053 | INT FLOW
7572,839 | .750E+03 .199E+03 | INT FLOW
2577.640 | INT FLOW
7576.641 | .750E+03 .198E+03 | INT FLOW
2570,749 | INT FLOW
7578,270 | | 181A
1030 | 181A
2030 | ∓
×∾ | 181A
1030 | 1STA
2030 | Ξ-
Σ-λ | 181A
1030 | 181A
2030 | E
E | <u> </u> | 187A
1030 | 181A
2030 | E 7 | 18TA
1030 | 181A
2030 | π.
Ε ν | 18TA
1030 | 181A
2030 |
E
M | 181A
1030 | 187A
2030 | | | | Ž- | | | 2 | | | ğn. | 4007E+0 | | | <u>0</u> - | | | 2- | | | N - | | | | | | 7785,49 | | | | | | | .1007E+04 | | | | | | | | | | | | | | | 5190,33 10 | | | | | | | FOR VARIABLE 2 | | | | | | | | | | | | | | | 1 ADJ FROM | | | | | | | OBJECTIVE FUNCTION FOR VARIABLE | | | | | | | | | | | | | | | VAR | | | | | | | OBJEC | | | | | | | | | | | | | | | | 750E+03 | | 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 604.746 | 401.783 | TINCNC) | |-----------------------------------|-----------|------------|-------------------------|----------------------|---|-------------------|----------|------------------| | | | | STA
030 | INT FLOW
2578.749 | TRG FLOW
0.000 | 000°0 | 70
80 | FLW DEV | | | | Ä | 197A
2030 | INT FLOW
7585,949 | TRG FLUW
0.000 | FLW 000. | 70 | FLW DEV | | | | NO NO | AL VARCAS | VAR(M1) | 000.0
0.000 | 1ANGST | ANDMG 0 | *101E+04 | | | | | STA
030 | INT FLOW
2578,749 | TRG FLOW | # 000° | 700 | FLW DEV | | | | īā | 91A IN | INT FLOW
7593.627 | TRG FLOW | FLW DBJ | 70 | FLW DEV | | | | E ~ | M1 VAR(M) | 3 VARCH1) | 08J DEV
0.000 | TANCST
603.703 | 402.920 | . 101E+04 | | OBJECTIVE FUNCTION FOR VARIABLE 7 | .1007E+04 | F007E+04 | ,1007E+04 | 70 | | | | | | | | | 010
010
NH | INT FLOW
2578,749 | TRG FLOW 0.000 | FLW 08J | 760 | FLW DEV | | | | Ä | 181A
2030 | 1NT FLOW
7531.575 | TRG FLOW
0,000 | FLW 084 | 70 | FLW DEV
0.000 | | VAR 7 ADJ FRUM 750.00 TD | 795,68 | 2 - | M1 VARCM)
7 .150E+04 | VAR(M1) | 08J DEV
0.000 | TANCST
607.922 | 398.339 | . 101E+04 | | | | - | 181A
1030 | INT
FLOW
2578,749 | TRG FLOW | 7000
W.J. | 70 | FLW DEV | | | | | STA IN | INT FLOW
7531,575 | 186 FLOW | FL# 08J | 70
80 | FLW DEV | | | | Z N | M MI VAR(M) | . VAR(M1) | 083 DEV
0.000 | 4ANCST
607.151 | 399.764 | . FTNCNC) | | | | | STA
030 | INT FLOW
2578,749 | 7RG FLOW
0.000 | FLW CB. | 70 | FLW DEV | | | | | 91A IN | INT FLOW
7531,575 | TRG FLOW | 780 MTL | | FLW DEV | | | | E O | M1 VARCH)
7 .147E+04 |) VAR(M1) | 085 DEV
0.000 | TANCST
606.381 | ANDMG 0 | . 101E+04 | | | 70727001 | | C + 13 D C C + | | | | | | | | | 1030 | 2578,749 | TRG FLUM
0,000 | FL# 085 | PLN
OOO | |-----------------------------------|-------------------------|----------------|----------------------|-------------------|---------------------------------|------------------| | | | ISTA
2030 | INT FLOW
7531,575 | TRG FLOW
0.000 | 000°0 | FLW DEV
0.000 | | 1500,00 TO | NC
1
1
2250,00 | | .779E+04 .225E+04 | 08J DEV | TANCST ANDHG
650,586 336,824 | 0 FTN(NC) | | | | 18TA
1030 | INT FLOW
2606,145 | TRG FLOM
0.000 | 000°0 | FLW DEV | | | | 1STA
2030 | 1NT FLOM
7531,875 | TRG FLOW
0.000 | 000°0 | FLW DEV | | | CN
Z | O
E

 | .771E+04 .225E+04 | 08J DEV
0.000 | TANCST ANDMG
648,803 338,191 | 0 FIN(NC) | | | | 151A
1030 | 1NT FLOW
2631,587 | 7RG FLUW
0.000 | FLW 08. | FL# DEV | | | | 191A
2030 | INT FLOX
7531.575 | TRG FLOW
0,000 | 760°0 | FLW DEV | | | S. P. | Ξ O
Σ T | .763E+04 .225E+04 | 08J DEV
0.000 | TANCST ANDMG | 987E+03 | | OBJECTIVE FUNCTION FOR VARIABLE 1 | .9874E+03 .9870E+ | +03 | .9866E+03 | | | | | | | 181A
1030 | INT FLOW
4641.267 | 7RG FLOW
0,000 | FLW 08J | FLE DEV | | | | ISTA
2030 | INT FLOW
7531-575 | TRG FLOW
0.000 | .000°0 | FLW DEV
0.000 | | | | E NI | .198E+03 .519E+04 | 08J DEV
0,000 | TANCST ANDMG | FINING) | | | | 181A
1030 | ENT FLOW 266 266 | TRG FLOW
0.000 | FL# 08J | FL# 0EV | | | | 1STA
2030 | INT FLOW
7531.575 | TRG FLOW
0.000 | 1000°0 | FL* DEV | | 7785.49 10 | NC NC 1 | Σ N | .198E+03 .701E+04 | 08J DEV | 632,730 350,530 | 983E+03 | | | | 197A
1030 | 1NT FLOX
2874,189 | TRG FLOW | 000°0 | FLW DEV | | | | 1STA
2030 | 1NT FLOW
7562,481 | TRG FLOW | FLW 084 | FLW DEV
0.000 | | | 2 A 2 | Σ
Σ
N | .196E+03 .731E+04 | 083 DEV
0+000 | TANCST ANDMG
632.874 350.434 | . PTN(NC) | | | | 1STA
1030 | INT FLOW
2901.670 | TRG FLOW | FLW OBJ | FL* 000 | | OBJECTIVE FUNCTION FOR VARIABLE 2 .9833E+03 | N. | Σ | | 083 054 | | | |---|---------------|--------------|-------------------------------------|-------------------|---------------------------------|---| | • | • | 17.00 | .194E+03 .701E+04 | 000*0 | 633.018 350.417 | O FININGS | | | .9833E+0 | . | 9-9834E+03 | | | | | | | 187A
1030 | INT FLOW
2844,594 | TRG FLOW | FLM 080 | FLW DEV | | | | 197A
2030 | INT FLOW
7528,872 | TRG FLOW
0,000 | 000°0 | >000
300
000
000
000
000
000
000
000
000 | | | Ç. | ₩ M
W M | .796E+03 .199E+03 | 083 DEV
0,000 | TANCST ANDMG
632.718 350.602 | 0 FTN(NC) | | | | 157A
1630 | INT FLOW
2846,256 | TRG FLOW
0.000 | 780°0 | FL & DE V | | | | 181A
2030 | INT FLOW
7530,764 | TRG FLDW
0.000 | FLW 083 | FLW DEV | | | <u>v</u> – | 7 H H. | VAR(M) VAR(M1)
*796E+03 .198E+03 | 081 DEV | TANCST ANDMG
632,726 350,553 | 983E+03 | | | | 187A
1030 | INT FLOW
2846,754 | TRG FLOW | 000°0 | FLX DEV | | | | 181A
2030 | INT FLOW
7531,8332 | TRG FLOW
0.000 | FLW 083 | FL* DEV | | | Š | 7 X | .796E+03 .198E+03 | 08J DEV | TANCST ANDMG
632,729 350,537 | 983E+03 | | | | 1STA
1030 | INT FLOW
2846.968 | TRG FLUW
0.000 | 7000°
M14 | FLW DEV
0.000 | | | | 18TA
2030 | INT FLOW
7531,575 | TRG FLUW | 000°0 | F C . O . O . O . O . O . O . O . O . O . | | | 9 | 7 H | .796E+03 .198E+03 | 083 DEV | TANCST ANDMG
632,730 350,530 | 983E+03 | | | | 181A
1030 | INT FLOW
2846.968 | TRG FLOW
0,000 | 000°0 | FLW DEV | | | | 191A
2030 | 1N7 FLOW
7539,649 | TRG FLOW 0.000 | FLW DBJ | FLW DEV | | | S N | ₩.
E. | .788E+03 .198E+03 | 08J DEV | TANCST ANDMG
632,176 351,059 | 983E+03 | | | | 181A
1030 | INT FLOW
2846,966 | TRG FLOW | 000°0 | FLW DEV | | | | 1514
2030 | INT FLOW
7547,796 | TRG FLOW 0.000 | FLW 065 | FLW DEV
0.000 | | | 25 | 7 X | .760E+03 .198E+03 | 083 DEV | TANCST ANDMG
631.623 351.596 | 983E+03 | | OBJECTIVE FUNCTION FOR VARIABLE 7 .9833E+0 | +03 .9832E+03 | | .9832E+03 | | | | |) | |---------| | .98336+ | 030 INT FLOW
030 2871,174 | TRG FLOW | 000°0 | FL 0 000. | |---|----------------------|--|-------------------|---------------------------------|-----------| | | 15TA
2030 | A INT FLOW
0 7558,355 | TRG FLOW | F.L. CBJ | FLW DEV | | | T- | H1 VAR(M) VAR(M1) 9 .694E+04 .255E+04 | 08J DEV
0.000 | TANCST ANDHG
636.174 346.555 | . 983E+03 | | | 157A
1030 | # INT FLOX | TRG FLOW | 700°0
80°0 | FLW DEV | | | 1STA
2030 | A INT FLOW
0 7558,355 | TRG FLOW | 780 °0
0 °0 | FLW DEV | | | E | M1 VAR(M) VAR(M1)
9 .687E+04 .235E+04 | 08J DEV | TANCST ANDMG
634,567 347,815 | 982E+03 | | OBJECTIVE FUNCTION FOR VARIABLE 1 9831E+03 | .9827E+03 | .9624E+03 | | | | | | 191A
1030 | A INT FLOW
0 4836.753 | TRG FLOW | CBD. 0.00.0 | FLW DEV | | | 1878 | A INT FLOW
7558,355 | TRG FLOW
0,000 | 000°0 | FLW DEV | | | EN C | 1 VAR(M) VAR(M1) | 08.3 DEV
0.000 | TANCST ANDMG
588.787 407.956 | 0 FTN(NC) | | | 19TA
1030 | A INT FLOW
0 3177,182 | TRG FLOW 0.000 | 7000.0
M. 14 | FLW DEV | | | LSTA
ROSO
SOSO | A 1NT FLOW
0 7558,355 | TRG FLOW
0.000 | 000°0 | FLW DEV | | VAR 1 ADJ FROM 7006.94 TO 6412,47 | EN | M1 VARCM) VARCM1)
1 .198E+03 .641E+04 | 083 DEV | TANCST ANDMG | 0 FIN(NC) | | | 18TA
1030 | A INT FLOW
0 3208,106 | TRG FLUW
0,000 | 780 M J J | FLW DEV | | | 15TA
2030 | A INT FLOW
0 7589,284 | TRG FLUW
0.000 | FL* 080. | FLW DEV | | | E NO Z | 1 .196E+03 .641E+04 | 083 DEV
0.000 | TANCST ANDMG
623,598 358,206 | O FINCHC) | | | 101
1030 | 1NT FLOX
3239,330 | TRG FLOW
0.000 | FL# 000. | FLW DEW | | | 1STA
2030 | A INT FLOW
0 7620.339 | TRG FLUW | FLW CB. | FLW DEV | | | EN
EN | 1 .194E+03 .641E+04 | 081 050 | TANCST ANDMG
623.748 358.187 | O FINCED | | OBJECTIVE FUNCTION FOR VARIABLE 2 .9817E+03 | .9818E+03 | .9819E+03 | | | | | FL# DEV | FLW DEV | FTNCNC) | FLW DEV | FLW DEV
0.000 | FTN(NC)
982E+03 | FL # DEV | FL 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | FTN(NC) | FLW DEV | F. 5000 | FTN(NC)
982E+03 | FL | FLW DEV | FTN(NC) | FLH 0.00 V | FLW DEV | O FTN(NC) | |--|----------------------|------------|----------------------|----------------------|--------------------|--------------------|--|-------------------|----------------------|-------------------|--------------------|---------------------------------------|----------------------|-------------------|----------------------|----------------|-------------------| | 780 .000 | FL# 080. | ANDHO 0 | 000°0 | 7.000° | ANDMG 0 | 000°0 | FLW 08J | 1 ANDMG 0 | FLW 08J | FLW 083 | 358,295 | 000°0 | FLW 080.0 | ASS. SZI | FLW 083 | FLW 084 | ASO. MO | | | | 1ANC8 | | | TANCST
623.433 | ia. | | TANCST
623.445 | | | TANCST
623,450 | t i | | TANCST
622.915 | | • | TANCST
622,380 | | 786 FLOW | TRG FLOW 0.000 | 08J DEV | TRG FLDW | 186 FLOW
0.000 | 083 DEV | TRG FLOW | TRG FLUW
0.000 | 083 DEV | TRG FLOW
0.000 | TRG FLOW
0.000 | 08J DEV
0,000 | TRG FLDW
0,000 | TRG FLOW | 083 DEV | TRG FLDW | TRG FLUW | 08J DEV | | 33.8
33.8
33.8
33.8
33.8
33.8
33.8
33.8 | # 20 X | VAR(M1) | L U W
623 | LOW
784 | VARCH1) | FLOW
6.114 | ₩01
78% | VAR(M1) | | FLOW
8.355 | VAR(M1) | N N N N N N N N N N N N N N N N N N N | 10 M | VAR(M1) | 30 E | FLOW
,112 | VAR(M1) | | INT FLON
3165.333 | INT FLON
7546,458 | VAR(M) | INT FLOW
3173.623 | INT FLOW
7554.784 | VAR(M) | INT FLO
3176.11 | INT FLOW
7557,284 | VAR(M) | 1NT FLOW
3177.182 | INT F
7558. | .769E+03 | 3177. | INT FLOW
7566,234 | . 762E+03 | INT FLOW
3177.182 | INT F
7574. | VAR(M) | | 19TA
1030 | 19TA
2030 | E ~ | 181A
1030 | 1STA
2030 | E N | 187A
1030 | ISTA
2030 | -N
E
E⊩ | 181A
1030 | 181A
2030 | IN
In | 187A
1030 | 151A
2030 | 1 R 1 | 187A
1030 | 181A
2030 |
₹
~ ~ | | | | 0 - | 78 (N | | 2- | | ^ | ğ- | | | NC
NC | | | ¥** | | | S
Z | | | | | | | | 0 | 181A
1030 | INT FLOW
3177-182 | TRG FLOW | FLM 083 | FLW DEV | |---|----------------|-----------|-----------|--------------|------------------------------------|-------------------|---|------------------| | | | | | 181A
2030 | INT FLOW
7660,243 | TRG FLOW | 11.
1000.00.00.00.00.00.00.00.00.00.00.00.00 | FL₩ DEV
0.000 | | VAR 7 ADJ FROM | 769.45 70 | 26.699 | 2- | Tr
Eo | VAR(M) VAR(M1)
2355+04 .6705+03 | 08J DEV | 1ANCST ANDMG
616,535 364,679 | 0 FTN(NC) | | | | | | 187A
1030 | INT FLOW
3177,182 | TRG FLOW | FLW 08J | FL# DEV | | | | | | 151A
2030 | INT FLOW
7660,243 | TRG FLOW | 780°0
6.00°0 | FLW DEV | | | | | S.W | EO | .233E+04 .670E+03 | 083 DEV
0,000 | TANCST ANDMG
614,938 366,326 | 981E+03 | | | | | | 187A
1030 | 1NT
FLOW
3177,182 | 486 FLO¥
0,000 | 000°0 | PLW DEV | | | | | | 187A
2030 | INT FLOW
7660,243 | TRG FLOW
0,000 | 7000 | FLM DEV | | | | | Z. | TO | .230E+04 .670E+03 | 08J DEV | TANCST ANOMG | . 981E+03 | | OBJECTIVE FUNCTION FOR VARIABLE | FOR VARIABLE 9 | .9812E+03 | .9813E+03 | | .9613E+03 | | | | | | | | | 181A
1030 | INT FLOW
3177,182 | TRG FLOW
0.000 | 7000°0 | FLW DEV | | | | | | 191A
2030 | INT FLOW
7660,243 | TRG FLOW
0.000 | 000°0 | FLW DEV | | | | | NC
T | I.O
E | VAR(M) VAR(M1) | 08J DEV
0,000 | TANCST ANDES | 0 FTN(NC) | | | | | | 1STA
1030 | 1NT FLOW
3177-182 | TRG FLOW | 7000 | FLW DEV | | | | | | 181A
2030 | INT FLOW
7660,243 | TRG FLOW 0.000 | FLW 08J | FLW DEV | | | | | 2- | To
E → | .641E+04 .270E+04 | 08J DEV | ALOLOST ANDRG | 982E+03 | | | | | | 181A
1030 | 1NT FLOW
3177-182 | TRG FLOW | 000°0 | FLW DEV | | | | | | 151A
2030 | INT FLOW
7660,243 | TRG FLOW | 780 474 | FLW DEV | | A P O A O M O M O M O M O M O M O M O M O M | 2351.25 | 2457.06 | - N | o
E | .641E+04 .246E+04 | OBJ DEV | TANCST ANDMG 623,719 357,326 | PTN(NC) | | 191A INT FLOW TRG FLOW FLW DEV 1030 31777182 0.000 | 1974 INT FLOM TRG FLOM FLW OBJ FLW DEV 2030 7660.243 0.000 0.000 | NC M M1 . VAR(M1) UBJ DEV TANGST ANDHG D FTN(NC) 1 1 1 1 .641E+04 .641E+04 0.000 623.719 357.326 .981E+03 | 197A 1N1 FLOW TRG FLOW FLW DBJ FLW DEV 0,000 0,000 0,000 | 191A INT FLOW TRG FLOW FLW DBJ FLW DEV 2030 7660.243 0.000 0.000 | NC M H1 VAR(M) VAR(M1) DBJ DEV TANCST ANDMG D FTN(NC) 2 1 1 .635E+04 .635E+04 0.000 622,164 359,276 .961E+03 | ISTA INT FLOW TRG FLOW FLW OBJ FLW DEV 0.000 0.000 0.000 | 18TA INT FLOW TRG FLOW FLW OBJ FLW DEV 2030 0.000 | NC M MI VAR(M) VAR(M1) OBJ DEV TANGST ANDHG OF FIN(NC) 3 1 1 .628E+04 .628E+04 0.000 620,651 361,229 .982E+03 | OBJECTIVE FUNCTION FOR VARIABLE 1 .9810E+03 .9815E+03 .9819E+03 | ISTA INT FLOW TRG.FLOW FLW DEV 1030 1030 1030 0.000 | 187A 1NT FLOM TRG FLOM FLW DBJ FLW DEV 2000 0.000 0.000 | NC M MI VAR(M) VAR(M1) OBJ DEV TANGST ANDMG O FIN(NC)
1 2 1 .1986+03 .9628+04 0.000 693,019 299.560 .9938+03 | ISTA INT FLOW TRG FLOW FLW DBJ FLW DEV 2719-713 0.000 0.000 0.000 | 19TA INT FLOW TRG FLOW FLW DBJ FLW DEV 2000 0.000 0.000 | H HI VARCH) VARCHID DBJ DEV TANGGT ANDRE | 1 .198E+03 .737E+04 0.000 646,474 338,056 | |--|--|---|--|--|--|--|---|---|---|---|---|---|---|---|--|---| - 100 | | | | | | | | | NCTION FO | | | | | | | | | | | | | | •ane | SUB*AREA RL | 940 | COMPUTATION | | | | | | |----------------------------------|----------------|-----------|-------------------------|---|------------------------------|--|---|--|--|-----------------|--------------------------|---------------------------|-----------------| | | | POTE | PUTENTIAL RI | ESERVI | DIR INF | L RESERVOIR INFLOW ISTAG ICOMP IECON 0 0 | 17 A P E | 1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3 | JPRT | INAME | PATAGE
0 | TAUTO | (1) | | | | | ā | PREVIOUSLY | | GENERATED
PLAN | HYDROGRAPHS | PHS READ | FROM TAP |)
(1) | | | | | | | • | | | œ | | | .ส. | . 87 | 76 | | | 148. | | | | | 040 | • | 004
7 | | 210. | 100
100
100
100
100
100
100
100
100
10 | 9092 | 100 C | | .00 | 150 | | J | | .097 | S G S | • • | 313 | | | 194. | • • • • • • • • • • • • • • • • • • • | n | | 7.0 | 080 | | | | •07 | 30. | • | 20 | | | | | | | | - | | | • 0 7 | • | | • | o | | | . | 7. | • | | • | • | | | *** | | * | *************************************** | | | **** | | *** | # # #
| | **** | | | | | | | | | HYDROGRAPH | RAPH ROUTING | 9
2
1 | | | | | | | | | PROP | OSED RE | SERVO | 3 | | | | | | | | | | | | | 1STAG TE | 1 4 0 | I COMP | IECON
0 | TAPE
O | JPLT | JPRT
S | INAME
1 | ISTAGE | IAUTO
0 | | | | | 0.0 | 000°0
000°0
0 | 800 | 0.00
0.00 | IRES | PLAN 1
RGUTING DATA
RES ISAME | , ao | a Wall | IDVA
PV | | | | | | | 0.0 | 00000
00000
00000 | 8 00 | A V G | ROU
IRES | PLAN 2
ROUTING DATA
ES ISAME
1 | 1001 | PMP1 | IOVR |
 | | | | | | | NSTP | | NSTDL. | LAG | AMSKK
0.000 | × 000° 0 | 18K | STORA -1. | | | | | CAPHX
25000. | CAPMN
0. 20 | COOL 2005 | ELEVL
975.00 | | 1 05. | RESE
COOM
100.00 | RESERVOIR DAT | ARDSCNT
.0504 | 0000 | ELEVT
975,00 | EXP
0.00 | | | | CAPACITYS
ELEVATIONS
COSTS | on o | | 2500.
1000.
1500. | 2 - W
2 - W
2 - W
2 - W
3 W | 0000
0000
0000
0000 | 5200.
4030. | 6800
1045
3600 | 0000
1000
1000
1000 | | 10750 | 15500.
1090.
5550. | 21.000
1.1000
0.005 | 30000.
1120. | | OUTLET CREST ELEVATIO | VATION 18 | 1044,07 | 4 | STORAGE | 3E OF | 6701 | | | | | | | | | STORAGE=
OUTFLOW= | | 7 | 1023.
416. | 1948. | | 3845.
3885.
1247. | C STORAGE
6701.
1662. | OUTFLOW FUNCTION
10674, 1424
15182, 2856 | PUNCT
PER PER PER PER PER PER PER PER PER PER | 7.
5. | 18469. | 23711.
55248. | 30000
68369 | | | | | | | | | | | | | | | | | | 297. 435.
1080. 1185.
18039. 17514.
5603. 4674.
1434. 1418. | 11 11 11 11 11 11 11 11 11 11 11 11 11 | INAME ISTAGE IAUTO | STURA LSTR 0.000.0000.00000000000000000000000000 | 17369.
17369.
492.
19.49.
1436. | |--------------------------------|---
--|--|--|---| | | 185.
17732.
6662.
1616. | 8852.
8752.
13575.
1705.
5366.
101AL | ************************************** | 1 P M P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | TOTAL | | N 2, RTIO
TOT ANN | 135.
6449.
6411.
7849.
1632. | 8855
88519
88519
88519
72*HDU
4271
11:3 | 11437
11NG
12PLT | AME
100PT
0 000X
0 000X
100X50 | 72-HUUR
72-HUUR
269.
19.49 | | 110, PLAN
CAP COST 3563. | 007F1.0w
897.
112.
112.
144.
648. | 8 91 91 91 91 91 91 91 91 91 91 91 91 91 | M STUMAGE # 114 ******** HYDROGRAPH ROUTING CATION REACH IECON ITAPE J | ING DATE OF OOO OOO OOOOOOOOOOOOOOOOOOOOOOOOOO | 24 HGUR
24 HGUR
613.
17.
16.51
12.7. | | STATION
RESERVOIR
6701.0 | 10000
10000
10000
10000
10000
10000
10000 | 33.5.4.4.0.8.6.8.6.8.6.8.6.6.8.6.6.8.6.6.8.6.6.8.6.6.8 | | 4 4 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 6-HUUK
907.
25.
25.
24.
6.10 | | 8 A | | ## ## ## ## ## ## ## ## ## ## ## ## ## | MAX************************************ | N N N N N N N N N N N N N N N N N N N | 968
941
941
941
941 | | | 1006.
1711.
11958.
11958.
1516. | OOT 10
WWOEFT | 집 이 경기를 하고 있다. | S CLOSS 0 0.000 NSTP8 50. | 0001 C
6001 C
6001 C
6001 C | | | | | POTENTI | 0°0
0°0
0°0
0°0 | | | | 105
105
120
120
130
130
150
150
150
150
150
150
150
150
150
15 | 743.
1410.
15538.
1149.
5934. | | | | | 11.PR | - | |-------------------|--------------|--------|-------|-------|-------|-------|-------|-------|-------|--------|-------|--------|--|-------------------------|-------|------------|------|--------|---------------------|---------------|-----------|--------|------|-------------|------------|------------|-------|-----------|-------|----------|--------------|------------|---|-------|--------|--------|----------|------------| | 0.00000 | ¢ | • | | ADSCNT
0.00000 | IAGST | _ | XDSCNT | 02040 | 0300 | | | DGPRT
0.000 | m | 0 | N | 6 0 | | N | • | | ir. | 0 | | | 9 | XANCOT | .08300 | 8 3.00 | ٠ م
د د | | TRGT | | × 20 × | 0.00 | 00000 | 1.000 | 005 | 3.200 | 4.700 | 6.500 | 7.800 | 9.300 | 1.000 | 3,700 | 15.600 | 000 | 0000 | 0000 | 002.0 | * | | | ئىدا | 0.0 | 29. | 3.6 | £. | 5.1 | E 4 | 7.7 | • | 07. | 21.97 | | 25 | NEG 1X | | | | | NDMG ISAME
3 0 | | | | | | 700 | | | | | | | | 6.600 | | · . | | | THIS DAT | | | TYPE 2 | 00.0 | 05. | 1.73 | 2008 | 2.28 | 1.67 | 1.08 | .50 | 77. | 10.02 | Č | TOTAL | X | 0058 | | | | ND NG
S | N N | | | | | | | | | | | | | | | | , | | T 0 T |
Z | | TYPE 1 | 00.0 | .07 | 078 | . 31 | .33 | .27 | 71. | 50. | . 0.2
50. | 1,59 | | | | | .0055 | 071 | | NFL00
16 | 1 4 0 | TYPE | 00000 | 000.0 | .100 | 200 | .300 | 300 | 007 | 500 | 009. | .700 | 008 | 006 | 000 | о с
V и | n a | \sim | IL DAMAGES | 030 PLAN | | _ | | | | | | | | 0 | , , | œ | | | | | 5000 | 101 | | 197A | STATION 103 | SUM | 00000 | 000.0 | 1.600 | 2.400 | 5,000 | 7.200 | 008.6 | 11.800 | • | 16.400 | 60.300 | 00.00
10.00
10.00 | | 000 | | 001.00 | ⋖ | . No. | | | | | Å, | | | | | | | 33.5 | | | | | 1700. | 67 | | | | PEAK | 1030. | 1130 | 1380 | 1740. | 2280 | 3200 | 4220. | 4600. | 5620. | .08480 | 7540 | 0700 | | 000151 | 200 | 2 | T | 5 6 | TACE TRUE | | | 5,462 1,752 | | 1.769 1.07 | | .323 .391 | | ું | .000 | VG ANN DMG | | | | | CAPACITY | CDS 7.8 | | | 2.5 | FRED | 000.4 | 2,500 | 005.4 | 3,500 | 5.500 | 1.500 | 006* | . 700 | . 500 | 03.0 | ີ ຄຸນ
ຄຸນ
ຄຸນ
ຄຸນ
ຄຸນ
ຄຸນ
ຄຸນ
ຄຸນ
ຄຸນ
ຄຸນ | 001 | 2 4 5 | 050 | . U | | | FLOUD DAMAGES | | | 3 | | 1940 | 2021 | 4312. | | 10101 | 8 15177. | ne. | ▼ | | | | | CAPA | | | 1130. 0.00 0.00 130. 0.00 0.00 130. 0.00 0.00 130. 0.00 0.00 130. 0.00 0.00 130. 0.00
130. 0.00 | 0000
0000
0000
0000
0000
0000
0000
0000
0000 | DESIGN DAMAGE FUNCTION | |---|--|------------------------| | 1380. 1380. 1380. 1780. 1780. 1780. 1780. 1880. | | DESIGN DAMAGE F | | 1300. 1300. 1300. 14300. 14300. 15260. 16260. 1 | 3
 | DESIGN DAMAGE F | | 2280 | 3
000000000000000000000000000000000000 | DESIGN DAMAGE F | | 2500 | Auvaumumum-ecococococococococococococococococococo | DESIGN DAMAGE F | | ## ## ## ## ## ## ## ## ## ## ## ## ## | 24 M - M - M - M - M - M - M - M - M - M | DESIGN DAMAGE F | | #800. | 2 | DESIGN DAMAGE F | | 5620. 53.4680. 53.4680. 5480. 553.4680. 553.4682. 550.1820. 550.1820.
550.1820. 550.18 | 2
000000000000000000000000000000000000 | DESIGN DAMAGE F | | 6480. 7340. 85240. 10000. 12100. 12100. 13100. 1300. 1300. 1300. 1300. 1300. 1300. 1300. 1300. 1300. 1300. 1300. 1300. 1300. 1300. 1310. 1 | 2
000000000000000000000000000000000000 | DESIGN DAMAGE F | | 7340 69 5.01 686 656 6.16 10000 82 6.16 6.16 12100 82 7.7 7.70 12100 1.76 17.51 7.71 13.00 0.00 0.00 0.00 1380 0.00 0.00 0.00 0.00 0.00 0.00 0.0 | 2
000000000000000000000000000000000000 | DESIGN DAMAGE F | | 8540 82 6.16 10000 97 12100 97 15100 97 17.51 PEAK CATEGORY DANAGES 1030. 0.00 0.00 1380. 0.00 0.00 1380. 0.00 0.00 2280. 0.00 0.00 4220. 0.00 0.00 4220. 0.00 0.00 5480. 0.00 0.00 5480. 0.00 0.00 5480. 0.00 0.00 55100. 0.00 1380. 0.00 | 2
000000000000000000000000000000000000 | DESIGN DAMAGE F | | 10000. 10000. 11.17 15.100. 11.17 17.51 17.51 17.51 17.51 17.50. | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | DESIGN DAMAGE F | | 12100. 1.17 9.90 15100. 1.17 1.03 11.03 1030. 0.00 1340. 0.00 1340. 0.00 1340. 0.00 1340. 0.00 1340. 0.00 1350 | \$ 000000000000000000000000000000000000 | DESIGN DAMAGE F | | 15100. 21000. 1.751 PEAK CATEGORY DANAGES 1130. 1130. 1130. 1130. 1130. 1130. 1130. 1130. 1130. 1130. 1130. 1130. 1130. 1130. 1130. 1130. 1130. 1130. 1131.
1131. | 2
000000000000000000000000000000000000 | DESIGN DAMAGE F | | PEAK | N 000000000000000000000000000000000000 | DESIGN DAMAGE F | | PEAK CATEGORY DANAGES 1030. 0.00 0.00 1380. 0.00 0.00 1380. 0.00 0.00 2260. 0.00 0.00 4220. 0.00 0.00 4220. 0.00 0.00 7340. 0.00 0.00 7340. 0.00 0.00 7340. 0.00 0.00 15100. 0.04 21000. 0.00 0.00 15100. 0.04 21000. 0.00 1360. 0.00 | \$\\ 00000000000000000000000000000000000 | DESIGN DAMAGE F | | PEAK - CATEGORY DANAGES 1030. 0.00 0.00 1350. 0.00 0.00 1740. 0.00 0.00 2250. 0.00 0.00 4220. 0.00 0.00 4220. 0.00 0.00 4240. 0.00 0.00 6340. 0.00 0.00 6340. 0.00 6350. 0.00 6360. 0.00 63 | | | | 1030. 0.00 0.00 0.00 1150. 0.00 0.00 0.00 1340. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | | | | 1130. 0.00 0.00 0.00 1350. 1350. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 0000000000 | | | 1380. 0.00 0.00 0.00 2260. 0.00 0.00 0.00 0 | 0000000000 | | | 1740. 0.00 0.00 0.00 2250. 0.00 0.00 0.00 4220. 0.00 0.00 0.00 0 | 600000000 | | | ZZE00. 0.00 0.00 0.00 4 220. 0.00 0.00 0.00 | 0000000 | | | 3200. 0.00 0.00 0.00 4220. 0.00 0.00 0.00 | | | | 4820. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | | | | ## ## ## ## ## ## ## ## ## ## ## ## ## | | | | 5620. 5620. 5620. 6480. 6340. 6340. 6340. 635. 1000. 635. 12100. 635. 1310. 630. 630. 630. 630. 630. 630. 630. 63 | | | | ERPOLATED ECUNUMIC DATA FOR TYPE 1300 000 000 000 000 000 000 000 000 00 | | | | T3400 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 90 | | | ERPOLATED ECUNOMIC DATA FOR STATEMENT OF STA | ء د | | | 10000. 12100. 12100. 142 318 15100. 15100. 1500. 164 5.04 175 1030. 1030 | | | | ERPOLATED ECUNUMIC DATA FOR STATE STATE STATE STATE SUM TYPE SUM TYPE SUM TABLE SUM TABLE SUM TABLE STATE SUM TABLE | | | | 15100 | 1 - | | | ERPOLATED ECUNUMIC DATA FOR STATERPOLATED ECUNUMIC DATA FOR STATE | 'n | | | ERPOLATED ECUNUMIC DATA FOR STATEM 1030. 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | 8 | | | ERPOLATED FECUNOMIC DATA FOR STAT 1030. 0.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 | | | |
030.
030.
0.000
0.00
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0. | ON 1030 PLAN | N C | | 380.00000000000000000000000000000000000 | -
-
-
-
- | 46 < | | 380.
944.
200.
1.151.
200.
1.857.
1.857.
1.857.
1.857.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877.
1.877. | | | | 944
947
1.151
220
5.167
7.167
7.167
7.167
7.167
7.167
7.167 | • | 2 0 | | 947 1.151 200 200 1.857 200 800 6.837 3.3 | | | | 200.
200.
30.
30.
30.
30.
30.
30.
30.
30. | 0,000 | 0.7 | | 52.00
6.837 | . 78 | 9 | | 800 | 1.584 | - | | | 1.784 | | | 620 a a 17 | 584 | 2 | | 480. 11.777 | 0 3,134 | 5 | | 340. 15,257 .5 | 1 000 | 0.63 | | 540. 17,990 | 3 5.044 1 | 2.27 | | 0000. 23.165 .8 | 4 6.576 1 | 5.75 | | 0.1 950 | 8 8.631 1 | 9.26 | | 5100. 37.874 1.2 | 1 12.372 2 | 4.22 | | 1000. | 5 15,710 2 | 96.9 | | | | 474
48874
600044 | | |--|---|--
---| | | | ###################################### | E IAUTO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | 12176 | * WO EO | | | 700 N | # Z | INAME
TOVABLE | | | DESIGN O | 4 * * * * * * * * * * * * * * * * * * * | UPRT IN | | | • | 10FF COMPUTATION 11APE JPLT 11APE 2 0 1,RATIO 1 1,RATIO 1 1,RATIO 1 1275 1946 1968 | ING OF LACE | | >
M • • • • • • • • • • • • • • • • • • • | 20.39
ANNUAL # | ###################################### | HYDROGRAPH ROUTING
DOATE DIVERSION
LECON ITAPE U
PLAN 1
ROUTING DATA
IRES ISAME I | | 00000000000000000000000000000000000000 | | 8 5 A 8 8 | A V G C C C C C C C C C C C C C C C C C C | | 00000000000000000000000000000000000000 | | 15TAG ICOM
20
20
PREVIOUSLY
7. 190. 15
1270. 15
1270. 15 | RESERVOIR TO 150 CCLOSS | | 20000 + C | AVG ANN BFI 31.21. UNIFURN PRUTECTION LEVEL = | 176.
1150.
460.
10. | X SECUES | | 1011
1012
1012
1012
1012
1013
1013
1013 | N BFI N PRUTECT | * | | | # 4 | AVG ANN
UNIFURH
LOCAL PR | | | | ND. TELON. TELON | | | | | | | •• | | •
• | | | | | | | 19 1
19 1
19 1, 19
21 1, 18 | | | | | | | | | | | | | | | | | |-------------------------------|----------------|---------|--|--------------------|--------------------|---------|-------------|--|--------|-------|--------------------------------------|----------|----------|------------|-----|--------|-----------|--------|-----|-----|-----|----------|----------------------------|--------|-------|------------|------| | | | • • | | 83000
8300 | | | 444 | 716. | 75. | | | M | *** | 3 - | ••• | • | | • | • • | | • • | | | | | | | | | | | | | | | 122 | 872 | ÷: | | | ~ | • | <u>-</u> ^ | | • | | •
• | | • | •• | | | | | | | | LS T | | 00 | | 15000. | TOVR
T | STORA
•1. | | | 10000. | | | 4 8 E | 1034 | 125 | :: | | રું | • | จึง | 6 | • | | • 6 | å | • | ••• | , VOLUME | 17375. | .77 | 19.49 | 1457 | | | a o
E
a
m | 18K
0.000. | | DDSCNT
.05040 | | | | 251. | 1184 | 101. | | | . | 'n. | . M | o. | • | • | • • | ô | • | • • | TOTAL | | | | | 7774 | | 1001
0 | ×000°0 | • • | ANCST
01500 | 7500. | 20, PLAN 2, RTIU 1 | | 19,
223, | | .70% | | | • | • 70 | , d | | • | c | • • | • | • | • • | 72-HOUR | •
0
0
0
0
0 | • 7. | 19.49 | 1437. | | | ROUTING DATA
ES ISAME
1 | AMSKK
0.000 | •• | DIVERSION DATA
RMN THBYR D.
0. 1500. | 5000. | 20, PLAN | OUTFLOW | | | | | STOR | • | | | | • | DIVERSION | • • | • | • | • • | 24-HOUR | 629 | | 17.74 | 1613. | | | IRES | 7
90 | • • | DIVER
DVRMN
0. | 3750. | × | 0 | , N | | | | | | r | | | | 10 | | | | | | 252. | ,
, | 8,43 | 766. | | | A√6
0.00 | NSTUL
0 | ••• | DVRMX
20000. | 2500. | STATION | | 198. | 1327 | , 35 V | 20 | | •
• | | | • | • | • | • • | • | • | • | PEAK | | | | | | | 000000 | ST DB | | | | | | 187. | 1243 | 200 | • | | • 0 | •
ห | , ao | | • | • | • • | | | | | _ | | | | | | 0°0
0°0 | | 100000. | | 1250. | | | 75. | 1115. | | • 0 # | | • | • • | 10. | • | •
• | • | • • | • | • • | • • | | 3 C | INCHES | Σ P U | THOUS CO M | | | | | •• | | 00 | | | _ | ======================================= | | | | | | | | | | | | | | | | | | ቿ | | | | | STORAGE | | CAPACITYS
COSTS | | | 161. | en or
or
or
or
or
or
or
or
or
or
or
or
or
o | 57. | 10 | | •• | 10 | .2 | | | • | 0 | • | • • | • • | | | | | | | | | | | | 11656 | 11956 | 1707 | 70 | 109. | | 39. | 225. | 239 | . Sb. | 3 | ณ | | 670. | 670. | 670. | • | • | • | | |-------------|--------------------|-----------|-----------|-------|--------|-------|-------|------|------|------|------|------|-------|----|---------------------------------------|-----------|------|------|------|------|-----|----|---| | | | | 000 | 0040 | 14877 | 1/54. | 219 | 112. | | 25. | 140 | 294 | 35 | 3 | ď | | 670. | 670. | 670. | 106 | • | • | | | | | | | * | 17560. | 10/4 | 639 | 121. | | 53 | . 76 | 351. | 33, | ທັ | ~ | | • | 670. | 670. | 568. | • | • | TOTAL VOLUME
285697.
8090.
12.62
320.53
23644.
29139. | | • | | 0 | 000 | **** | | £120. | 566. | 159. | | . 71 | 75. | 405. | 43. | 5. | | | • | 670. | 670. | 670. | • | • | | | 01 tx *2 v | TOT ANN S | | • | | | | 300 | 131. | | , | 65. | 443. | 59. | • | , n | | • | 670. | 670. | 670. | • | · | 72*HDUR
11562
12662
320653
23624
29139 | | 20, PLAN 2, | CAP COST 707 | OUTFLOW . | | | | 3,467 | 357. | 136. | STOR |) • | • 09 | 461. | 79. | 7. | · · · · · · · · · · · · · · · · · · · | NOTRETAIN | 0 | 670. | 670. | 670. | • 0 | • | 24eHdUR
10926e
1309e
11:58
294e
294e
21682e
26745e | | STATION | DIVERSION
569.9 | | • 00 • 00 | | 26678. | | 441. | 147. | | | 56. | 454. | 103. | • | | | • 0 | 670. | 670. | 670. | •0 | •0 | 6-HUUR 24
21360: 1
605: 143:79
10597: 2
13072: 22 | | | | | | | | | | 157. | | • | | 424. | | | ň | | • | | | | •0 | •0 | 23
000
000
000
000
000
000
000
000
000
0 | | | | | | | | - | 759. | | | · · | . mo | | 155. | | · | | • | | | 670. | •0 | • | THOUS COT | | | | | | 2417 | | _ | 601 | K128 | 15789 | 4536 | 1014. | 176 | | ٠, | 777 | 3.6 | 191 | ?∂ | 3 | | 0 | 670 | 670 | 670 | 0 | 0 | . 1
5 - 1 | |-------------------|---------|------|-------|-------|-------|-------|-------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------------| | 11.68 | AANC81 | ADSCNT
0.00000 | • | | | | | | | | | | | | | I | | | | | | LAGAT LONG | 0.000 PR | TRGT
0. | NOME ISAME | NONG P | - | | | | | | | | | | | | | | | | | | | NFL00 | PLAN | TYPE | 0.000 | 0.000 | 1.600 | 2.400 | 5.000 | 7.200 | 9,800 | 11.800 | 3,900 | 16,400 | 0.300 | 23,100 | 8.000 | 34.500 | 300 | 0.100 | | | 2030 | | | _ | | | | | | | | | | | | , , | 7 | | | 18TA
2030 | STATION | M∪K | 0.000 | 000.0 | 1.60 | 2.40(| 5.000 | 7.200 | 9.80 | 11,800 | 13,90(| 16,400 | 20,300 | 23.10 | 100.EX | 34,500 | 44.300 | 50,100 | | | ~ | | 30. | 30. | .00 | 0.0 | | . • 00 | 0 Z | 00 | | 90 | ं
• | • | • 00 | . 00 | • 00 | .00 | | | DATA | | 0.1 | = | | _ | 25 | 32 | 4.7 | 917 | 50, | 79 | 73 | 8540 | 001 | 2 | | ≥
• | | | | FRED | 000.9 | 5.500 | 4.500 | 3,500 | 2.500 | 1.500 | 006 | .700 | . 500 | .350 | . 25° | 051 | 001. | 000 | 020 | .005 | | 1130 | | | | | | | |---|------------|---------|-----------|------|------------|------------| | | | | | | | | | 1300 | 1.60 | | | | | | | 1740. | | | | | | | | 2280. | | | | | | | | 3200. | | | | | | | | 4220. | | | | | | | | .0084 | | | | | | | | 2620. | | | | | | | | 6480 | 16.40 | | | | | | | 7340. | 0.3 | | | | | | | 8540. | 3.1 | | | | | | | 10000 | 8.0 | | | | | | | 12100. | . 5 | | | | | | | 15100. | . 7 | | | | | | | 51000° | - | | | | | | | | | | MAX TAX | | | | | * XV3d | - CATEGORY | DAMAGES | | 2000 | DAMAGE FUR | FUNCTION - | | 1030. | .00 |) | | | | | | 1130. | | | | | | | | 1380 | | | | | | | | 740 | • : | | | | | | | - 0000 | • | | | | | | | 0000 | 00.5 | | | | | | | 0000 | | | | | | | | -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | | | | | | | | *00 P7 | | | | | | | | .0295 | 3.0 | | | | | | | 6480. | 4.4 | | | | | | | 7340. | 0.3 | | | | | | | 8540. | 3.1 | | | | | | | 100001 | 6 | | | | | | | 12100. | = | | | | | | |
15100. | | | | | | | | 21000. | 50.10 | | | | | | | () () () () () () () () () () | | | | | | | | A LEU EC | MUMIC DAT | S S | 2030 PLAN | ^ | | | | Ψ. | | TYPE | | | | | | 1030 | c | 00 | | | | | | 25 | 0 | 00000 | | | | | | 1380 | 0 | 000.0 | | | | | | 1740 | • | 0000 | | | | | | 0.628 | 0 | 0000 | | | | | | 3200 | C | 0000 | | | | | | 4220 | 0 | | | | | | | 4800 | 0 | | | | | | | 5620 | • | | | | | | | 7653 | | 000 | | | | | | 7660 | • | o., | | | | | | 0.380 | | 750.14 | | | | | | _ | 10 | 0.1 | | | | | | 2 6 | | • | | | | | | - | • | -7 | | | | | | <u> </u> | | - | | | | | | 100 | ್ಟ್ | - | | | | | | | • | | | | | | | 940. 6.000 .284
1115. 5.462 1.752
1506. 3.097 1.776
2286. 1.769 1.075 | | 100000 MH
1000000 MH
1000000414 | | | | | | | |--|--------------------|---------------------------------------|-------------------------------|--|--------------------------|---|--------------|-------------| | , m - | | 0000 W - | | | | | | | | | | 000 W- | | | | | | | | | , = | 0 m- | | | | | | | | Ť | | 3.44
10.45
14.5 | | | | | | | | • | 36. |

 | | | | | | | | • | v | 1 19 | | | | | | | | • | | | | | | | | | | AVG ANN DMG | 5.51 | 5.51 | | | | | | | | AVG ANN BET | 28.07 | 28.07 | | | | | | | | UNIFORM PROTE | PRUTECTION LEVEL | © | | | | | | | | 5 | CAP COST | r
in
N | TOTAL AN | ANNUAL. | | 8
0
2
0
0
0
0
0
0 | 7660 | | | *** | | · · · · · · · · · · · · · · · · · · · | | · 我就就完全我也就是 | | 化妆妆妆妆妆妆 | *** | **** | | | | | SUB-AREA RUNDFF | UNDPF COMP | COMPUTATION | | | | | | LOCAL | INFLOW TO FOR
ISTAG ICO | TOREBAY POOL | ₩ ſ\
6.
+-
H | ,
,
, | JPRT | TNAME 16TAGE | GE IAL | | | | PREVIOUSL | Y GENE | HYDROGRA | PHS READ F | ROM TAP | | | | ณ์ | Č | ٠. | | 1 | 7. | • | | 7.7 | | .55. | 58 | • 79 | . 99 | 70. | • | 90 i | 108 | 160 | | 183. | .54. | 129. | | | £03 | 383. | 333. | 278. | | | 7 | 01 | -
- 00 | | | | | •
•
• | | . | , | • | | * | 100 | Š | N | i vi | | 1 日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日 | | ************ | | | | | | | | | | | COMBINE | E HYDROGRAPHS | | t | | | | | | THE PERSONS | \$ 6
0
0
0
0
0 | i | | | | | | | 19140 | ISTAG ICOMP | ICOMP IECON | UL
ITAPE | JPLT | JPRT | INAME ISTAGE | GE IAU | | | | | | | • | | | | | | | SUM OF 3 HY | DRUGRAPHS | AT 30 | PLAN 1 | RT10 1 | | | | | | PEAK | 6-HUUR | 24.HOUR | 72-HUUR | TOTAL | VOLUME | | | | 9 00
2 0
3 0 | | 6 | ************************************** | • .
• .
• .
• . | | #00K3• | | | | INCHES | | ٠
٢
٢ | 9 | .78 | | . 78 | | | | AC | | 06.00 | 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 19,96 | | 06.6 | | | | | | | | | | | | | ~ | |-----| | Z | | - | | • | | | | _ | | 0 | | 303 | | | | I | | | | Ω. | | ⋖ | | Œ | | 3 | | ō | | Œ | | ۵ | | ≍ | | _ | | I | | | | | | | | | 200000
000000
-00000 | ~ @ Q V V V V V V V V V V V V V V V V V V | | | | 6 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2002
2002
2000
2000
2000
2000
2000
200 | |-------------------------|--|----------------|--------|-----------|--|---|---|-----------|-----------|---|---| | GE TAUTO | α - | | • • • | | 2444
2444
2446
2446
2446
2446
2446
2446 | M 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | | 400004
4000000
40000000000000000000000 | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | ISTAG | | | | | M4000K | | ≅ | | | | พญิติลิส | | E A Z E | IOVR
0 | STORA -1. | ••• | | M40004 | -40-4
-80-4
-80-84 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | 3,000 | -30808 | | JPRT | 0.0
X
0.0 | TSK
0,000 | | | ###################################### | 50 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | TOTAL | | a. | | 47-44
84-46-60
94-78-60
64-78-60 | | JPL7 | 10P1
0 | ×000°0 | •• | 1, RTIO | 2003.
2003.
2000. | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 72*HDUR
670*
19*
19*75
3326* | 1036. | 1, RTIO | 0.000
10000
10000
10000
10000 | -04-05
-04-05
-04-05 | | ITAPE
0 | PLAN 1
ROUTING DATA
RES ISAME
1 | AMSKK
0.000 | • • • | 305, PLAN | 0077108
15.
15.
2000.
2000. | 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 24.
1. 1.000
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | A G E | 305, PLAN | 18.
18.
314.
1200.
1200.
1200. | 50 00 00 00 00 00 00 00 00 00 00 00 00 0 | | SITE | IRESOU | CAG
C | ••• | z | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | , 1 00 | NU WUL
WOW | M STORAGE | Š | | | | PLANT
COMP | A V.G | NSTDL
0 | ••• | STATION | 14.
1078.
1200.
1800. | 5.
75.
359.
1011.
749. | мом
Х.•.
Т | MAXIMUM | STATIC | | 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | PUMPING
ISTAG
305 | 000°0 | NSTPS | 100000 | | 14.
187.
1200.
1200. | 1.0.9%
21.000%
611.00% | | | |
WWW.
WWW.
WWW.
WWW. | 13 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | PROPOSED | 0°0
0°0
0°0 | | 1200 | | 14.
150.
200.
546. | 90 80 80 80 80 80 80 80 80 80 80 80 80 80 | CPS
CAS
INCHES
INCHES
AS
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC | | | N N N N N N N N N N N N N N N N N N N | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | •• | | | | (1985년) (1 시 후 1)
(2) (2) (1 시 년 1)
(2) (3) (4 시 년 1) | | | | | | | | | ASER | | 11.25.00.00.00.00.00.00.00.00.00.00.00.00.00 | | | | | 12009
12009
12000
12000
12000 |
0.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000 | | | | 66 | | ૺ૾૽ |-----------------------------------|----------------|----------------------|-------------------------------------|----------------------|----------|--------|-------|-------|---------------------------------------|-------|-------|------|------|----------------------|--------------|-------|--------|-----|-----|---|-----|------------------|------|-------|--------|-----------------|--| | | | 00 | | | | | 80 e | 1200 | 200 | 287. | | • | | 514. | 3 (| . 96. | | • | • | • | 00 | | | | | | | | 2 -
2 - | | • • | | 00000
8670 | | | 7 40° | • 0 | 2002 | 315. | | | 107. | 490 | | 105 | | | | | • • | | | | | | | | ZOVR
0 | STORA
-1. | • • | | • | | | | 1200 | 0 2 2 2 2 2 | 2 | | • | 93. | · (| 0.44
0.44 | 114. | < | • • | • | | • • | | - ~, | 1087. | 18.85 | 3174. | | | 0.0
X
0. | 1SK
0.000 | | 1 PDSCN1 | | | • | 247 | 1200 | 1200 | 374. | | • | 82. | 907 | | 125. | | • | • | • | •• | Ė | | | | | | | 1001 | ×000. | | T DATA
ST PANCST
0. 02300 | 0000 | 2, RTIO | |
 | . 660 | • • • • • • • • • • • • • • • • • • • | 407. | | 'n | 72. | 366. | . 572 | 136. | c | • • | • | • | •• | 91101-67 | | * T | 18.85 | 3174. | | | PLAN 2
ACUTING DATA
S ISAME | AMSKK
0.000 | •• | ING PLANT (
DN PWRCST
0. 100. | 2000
2000
2000 | 05, PLAN | FLO₩ | | | | | 0.1.0 | 5 | | | | | OMPING | • • | • | | | 7 | 1151 |
 | | 2818 | | | ROUT | O O | •
• • | PUMPING
PMPDN
1500. | 1000. | M | ā. | 187 | 96 | | 7 7 | | ว เก | 9 | N 5 | | 77 | ⊋° | | | | | 0
0
0
0 | 500 | . 7 | 3.54 | 595.
734. | | | A V G | NSTOL | | NE O | • 000° | STATION | 3 | 159. | . 830 | 1200 | 3 | | s. | | • 004 | 424 | 161 | ۓ | | | • | •• | • | | | | | | | 000000 | NSTPS
1 | 100000. | 10000 | ပိုင် | | 3
• | 131. | . 200 | • 00 | . 626 | | 'n | ચા | | . • | - | • 0 | | • | | •• | 07
7: | 1200 | 77 | | | | | 0 0 0 0 | | 1200. | | 250. | | | | | - | | | | | | | | | | • | | | | CFS | CMS | X
X | ACEFT
S CU R | | | . | | •
• • | | • • | | | 105. | 500 | 1500 | 578 | | 'n | 5.5 | - 30
- 31
- 31 | 264 | 193 | | | ٥. | • |) o | | | | | THOUS CL | | | | | STORAGE:
OUTFLOW: | | CAPACITYS | | | •08 | 46t | 2002 | 634. | | | 2 | 543 | 8 | 211. | •0 | 0 | • 0 | | | | | | | | | | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | | | | | 20 S | 0000 | 2002 | 282 | 0000
0000
0000
0000
0000
0000 | , r | 44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
44440
4440
4440
4440
4440
4440
4440
4440
4440
4440
4440
4440
4440
4440
4440
4440
4440
4440
4440
4440
4440
4440
4440
4440
4440
4440
4440
4440
4440
4440
4440
4440
4440
4440
4440
4440
4440
4440
4440
4440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
40 | | |--
--|-----------|------------|-------------|------------|---------------|---|-------|---------------------|--|--------|--|--| | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | | | | | 20 | 0000
0000
N. W. W. | 00 | 209 | 37770 | 900 | ************************************** | | | 74440
0 74440
0 74440
0 74440
0 74440 | 62367.
1756.
1756.
1021.
30.62.
5157.
6361. | | | | | 200 | • • • • • • • • • • • • • • • • • • • | 200 | 149 | 17276.
36986.
39990. |)
} | 2000
2000
2000
2000
2000
2000
2000
200 | VOLUME
63666
18686
10.23
31.26
5264
64944 | | 2457
2457
2457
2457 | 000R T01AL
898.
828.
557.
611. | | •
• | | 7 ANN 8 | 33 | 1200. | 00 | 111
363 | 36025. | | 2000
2000
2000
2000
2000
2000
2000
200 | 00R TOTAL
51.
30.
23.
26.
26.
94. | | NG 00.0000000000000000000000000000000000 | HOUR 72=H
34.
34.
4.14.
556
51.
4.14.
501.
51.
51. | 25706. | PLAN 2, RT | | WR COST TO | . 280
1000 | | 200 | 93 | 11716
34865
39965 | ì | | 0008 72*4
34.0 10 0
114.0 114
34.0 52
34.0 52
34.0 52 | | PUMPI
2457
2457
2457
2457 | 00000 0000 00 | STORAGE = | 305, | | AP CC | | 11.000
0000 | 500 | 0 0 0
0 0
0 0 | 4255
43480
39890 | | 2457
2457
2457
2457 | 0008 24.
34.
554.
34.
310846E | | 24577
24577
24577 | NO N | MAXIMUR | STATION | | PUMPING C | 200 | - 0000
N N N N N N N N N N N N N N N N N | 200 | 83
725 | 31851. | } | 2457
2457
2457
2457
2457 | PEAK 011 134.
011 134. 011 134 | | 2002
2002
2003
2003
2003
2003
2003
2003 | | | | | • | 247.
1200, | 1200. | 1200. | 82
575 | 5397
29972
39556 | | 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | 7.4.4.0
7.4.4.0
7.4.4.4.0
7.4.4.4.0
7.4.4.4.0
7.4.4.4.0
7.4.4.4.0
7.4.4.0
7.4.4.0
7.4.4.0
7.4.4.0
7.4.4.0
7.4.4.0
7.4.4.0
7.4.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7 | THOUS | | | | | 200 | 1000 | 2 | 8.2
456 | 27844. | • | 0000
0000
0000
0000
0000
0000
0000
0000
0000 | IN
THOUS A | | 0 2 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | JLP=1935416 | | 9 8 8 | 1200. | 00 | 8 49
34 73 | 10000000000000000000000000000000000000 | , | #************************************* | | | 1 PR |-------------------------|----------|-------|-------------|--------|--------|----------|----------|---------|----------|--------|-----------|---------------|---------|-------------|---------|------|------------|--------------|-----|--------|--------|---------|-------|----------|--------------|------|----------|--------|-------|------|------|-------|--------|-------|-------|---------|---------|--| | 0.00000 | N. Ja | | | | | ADSCNT
0.00000 | 0 | • | | | | | | | | | | | | | | | 000 0
000 0
000 0 | 1861
0. | NOWG TO ANNOAL | | | | | | | | | | | | S DATA | | | TYPE 2 | 000 | 3 (
3 , |)
0
10 | . a | | 90.6 | 59*7 | 3,86 | 05.40 | | | | | 60 | 77. | 1.28 | 2.79 | 4.18 | 3,21 | 06.2 | 14.90 | 30.50 | | | กลื่ง
วาลิง | ()
() | | 10.500 | 15.000 | 52,500 | 02.000 | 005.50 | 000.00 | 390,000 | 000.04 | 80 | FOR THIS | 0 | | | K Č | - | | | | | | | | | | T. | | o
NA | | TYPE | 00.0 | | 18.50 | 100 | 300.95 | 223.56 | 106.13 | 75.28 | 1064.81 | PLAN | | TYPE. | • | 2 10 | 1.56 | 5.33 | 56.66 | 120,38 | 78.78 | 64.3 | 327,31 | 737,50 | | | NFLOD
10 | OS PLAN | 1 C | 7.5 | 75.000 | 125.0 | 3150,000 | 5850.000 | 000.050 | 000 0006 | 0.0590 | 11250,000 | AL DAMAGES | i. | | | | | | | | | | | | 305 P | | w∩s . |)
) | > 7 | 00 | | 87 | 50 | 60 | 22 | 2 | 00 | | | 31A
305 | M | E 0 | | | | | | | 000 | 000 10 | 000 | ANNIAL | 14 | | Ś | • | ۸. | ∾ีเ | | | 7 2 | 110.98 | 79. | 1110. | | | s. | •
• | • | N | ٥ | .65 | 124,50 | .18 | 67. | 342.2 | 768.00 | | | | STATION | • | •
•
• | 000.06 | 11177 | 3255 | 6052 | 7350 | 9390.000 | 11190 | 11835.000 | AVERAGE | STATION | 9089
808 | L N | 000 | 5.5 | 197 | 00. | 7 2 | 037 | 013 | 900 | DMG | STATION | PROB | - :
Z | 000 | 101 | 500 | 119 | .075 | 037 | .013 | 800 | 9 M Q | BFT | | | | DATA FOR | x 000 | * 000 | 0000 | 7000 | 12500. | 20000 | 28000 | | | | å | r
Č | XCOX | | 0 | | | | | | | | VG ANN D | S FUR | | FREG | 0 00% | 0 8 7 | | 60 | .075 | 030 | 600 | .004 | AVG ANN | AVG ANN | | | | DING | 2 6 | 004 | 0 4 | 250 | 001 | 020 | 000 | 010 | 100 | 200 | NO ADJUSTMENT | 4 | | D. STOR | - | _ | | | 1000 V | | 8 33699 | 53876 | | FLOOD DAMAGE | Ť, | NO. STOR | | | 1630 | | | | | | | | | | OPERATION S | STATION | 4
4
4 | Z Z | 8ATIO 1 | RATIO 2 | RATIUS APP | LIED TO
RATIO 470 | FLOWS
RATIO 5 | AATIO
1.50 | AA110
2.20 | RATIO
S.2. | RATIO 9 | |---------------|-----------|------------------|--------------|--|--|---|--|--|---|--|--|--| | НУВКОСВАРН АТ | | 35.10
90.91) | - " | 1343.
38.02)(
1343.
38.02)(| 1611.
45.62)(
1611.
45.62)(| 2685.
(76,03)(
2685.
(76,03)(| 3759.
106.44)(
3759.
106.44)(| 5370.
152.06)(
5370.
152.06)(| 8055
228.093
8055
228.093 | 11814,
334,54)(
11814,
334,54)(| 17453
494.20)(
17453. | 23628
669.073
23628
69.073 | | ROUTED TO | • | 35,10
90,911 | - "~ | 1343.
38,02)(
588.
16,65)(| 1611.
45.62)(
666.
18.85) | 2685.
(76.03)(
910.
(25.76)(| 3759.
106.44)(
1084. | 5370.
152.06)(
1324.
37.48)(| 8055.
228.09)(
1656,
46.89)(| 11814.
334.54)(
6328.
179.20)(| 17453
494.2036
12033
340.7336 | 669.073
18039.
510.803 | | ROUTED TO | 1030 | 35.10
90.91) | - . ~ | 26.65)(
525.
14.87)(| 1139.
32.241
594. | 1940.
(54.94)(
839.
(23.76)(| 2921.
82,713(
1005.
28,463(| 4312.
122.10)(
1252.
35.47)(| 6699,
189,70)(
1574,
44,58)(| 10191,
288,58)(
4949,
140,13)(| 15177
429.7730
10079.
285,4130 | 20603.
583.42)
15369.
435.19) | | HYDRUGRAPH AT | 20 | 35.10
90.91) | | 1343.
38.02)(
1343.
38.02)(| 45.02)
45.02)
1611. | 2685.
(76.03)(
2685.
(76.03)(| 3759.
106.44)(
3759.
106.44)(| 5370.
152.06)(
5370.
152.06)(| 8055.
228.09)(
8055.
228.09)(| 11614,
334,54)(
11814,
334,54)(| 17453.
494.20)(
17453. | 23628
669.07)
23628
669.07) | | ROUTED TO |)
6 | 35.10
90.91) | - 2 | 1343.
38.02)(
1346.
38.12)(| 1611.
45.62)(
1549.
43.86) | 2685.
(76.03)(
2023.
(57.29)(| 3759.
106.44)(
3096.
87,68)(| 5370,
152,06)(
4717,
133,56)(| 8055,
228,0910
7408, | 334,54)(
11178,
316,53)(| 17453
494.201
16833
476.651 | 659.07)
659.07)
652.026 | | RUUTED TO | 2030
(| 35.10
90.91) | - ~ | 941.
26.65)(
26.61)(| 32,24) | 1940.
54.94)(
1500.
(42.46)(| 2921.
82.71)(
2280.
64.57)(| 4312.
122.10) (
3591.
104.51) (| 189,70)(
5939,
168,16)(| 10191.
288.58)(
9455,
267.74)(| 15177
429.773(
14455
409.313(| 5603.
583.423
563.283 | | HYDROGRAPH AT | ů
Š | 25.90) | - " | 453.
12,81) C
12,81) C | 15.38)
15.38)
15.38) | (25,63)(
25,63)(
25,63)(| 1267.
35.88)(
1267.
35.88)(| 1810.
51.25)C
1810.
51.25)C | 2715.
76.8831
2715.
76,8831 | 3982
112.763(
112.763(| 5883,
166.57)(
5883,
166.87)(| 7964
225,52)
225,52) | | 3 COMBINED | °F | 80.20 | | 2219.
62.84)(
1660.
46.99)(| 2676.
75.79)
1939.
54.90) | 4563,
(- 129,21)(
- 2712,
(- 76,81)(| 194,23)(
3947,
111,75)(| 10154,
287,53)(
5974,
169,15)(| 15693,
444,39)(
9178,
259,89)(| 672,47)(
14377,
407,11)(| 35345
1000.86)(
25809,
730.83)(| 48011.
1359.533
38550.
1091.603 | | AGUTED 10 | 305 | 80.20
207.72) | | 1200.
33.98)(
1200.
33.98)(| 33.98)
33.98)
33.98) | 1200.
(33,98)(
1200.
(33,98)(| 33,98)(
33,98)(
33,98)(| 1200.
33,98)(
1200.
33,98)(| 33,98)(
1200,
33,98)(| 1200,
33,98)(
1200,
33,98)(| 1200
33,98)(
33,98)(
33,98) | 33,98)
33,98)
33,98) | | | | | | EAK STORAL
1056.
1278.)(
749.)(| CES IN ACH
1486.
1833.)(
1088.) | RE FEET (10
3587,
(4424,)
(1554, | 00 CUBIC M
5904.
7283.)(
1630.
2011.)(| ETERS)***
11788.)(
3274.)(| 15876.
19583.)(
5603. | 24937
30760,)(
13184,
16263,)(| 47734.10
27734.10
31708.10 | 53876
36455
49354 |
 PARTO PARTO O. | | | | | | | | | | | × + + + + + + + + + + + + + + + + + + + | |--|--|-----------------------------|-----------------------------------|---|--------------------|--|---------------------------------|--|---|--|---| | 617 8 | 2 | | | | 7 | | | 827. | • | # # # # # # # # # # # # # # # # # # # | 18NF18
5773 | | DIV 7
670. | MARY
OF DOLLAR | 7408. | 373. | 257. | | : | 350 | | | He has the second of secon | AND MG | | VAR 6 | MANCE SUM | | * | * | | * ** | | 7 4 | *
*
*** * | 2
2
2
2
2 | ANDGES | | SYSTEM OPTIMIZATION RESULTS AR 4 VAR 5 VAR 6 0. 0. | AND PERFOR | * | #
#
| CEMENT CO | * | * | * * * | | | MAX THI ZE | 14NCST
465. | | SYSTEH OP
VAR 4
0. | SYSTEM COST AND PERFORMANCE SUMMARY
Same as input . Normally 1000's of Dollars) | * * | L COST * | AND REPLA | | ISTING CON | TIMIZED SY | ION CBENEF | BENEF118 * | **** OPTIMIZATION GBJECTIVE - MAXIMIZE BYSTEM NET BENEFITS **** | ANDMPR | | VAR 3 | SY
(UNITS SA | L COST * * | ZED CAPITA | O.M.POWER | . 0387 . | 16ES EX | 16ES OP | AGE REDUCT | | IMIZATION | ANFCST
254. | | × × × × × × × × × × × × × × × × × × × | | SYSTEM CAPITAL COST * * * * | SYSTEM AMORTIZED CAPITAL COST * # | SYSTEM ANNUAL D.M. POWER AND REPLACEMENT COST | SYSTEM ANNUAL COST | AVERAGE ANNUAL DAMAGES EXISTING CONDITIONS | ANNUAL DAMAGES OPTIMIZED SYSTEM | AVERAGE ANNUAL DAMAGE REDUCTION (BENEFITS) | AVERAGE ANNUAL SYSTEM NET | | TFCST
5034. | | VAR 1
5701. | | TOTAL SY | TOTAL SY | TOTAL SY | TOTAL SY | AVERAGE | AVERAGE | AVERAGE | AVERAGE | | |